Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    In Situ Investigation of Multicomponent MOF Crystallization during Rapid Continuous Flow Synthesis
    (American Chemical Society, 2021-11-17) He B; Macreadie LK; Gardiner J; Telfer SG; Hill MR
    Access to the potential applications of metal-organic frameworks (MOFs) depends on rapid fabrication. While there have been advances in the large-scale production of single-component MOFs, rapid synthesis of multicomponent MOFs presents greater challenges. Multicomponent systems subjected to rapid synthesis conditions have the opportunity to form separate kinetic phases that are each built up using just one linker. We sought to investigate whether continuous flow chemistry could be adapted to the rapid formation of multicomponent MOFs, exploring the UMCM-1 and MUF-77 series. Surprisingly, phase pure, highly crystalline multicomponent materials emerge under these conditions. To explore this, in situ WAXS was undertaken to gain an understanding of the formation mechanisms at play during flow synthesis. Key differences were found between the ternary UMCM-1 and the quaternary MUF-7, and key details about how the MOFs form were then uncovered. Counterintuitively, despite consisting of just two ligands UMCM-1 proceeds via MOF-5, whereas MUF-7 consists of three ligands but is generated directly from the reaction mixture. By taking advantage of the scalable high-quality materials produced, C6 separations were achieved in breakthrough settings.
  • Item
    Halocyclopropenium-Halide Halogen-Bonded Ion Pairs and Their Hydrogen-Bonded Halide Solvates
    (Wiley-VHCA AG, 2023-01-19) Abdelbassit MS; Curnow OJ; Waterland MR
    A series of salts with a diaminohalocyclopropenium cation and halide anion [C3(NiPr2)2X]X (X=Cl ([1]Cl) or Br ([2]Br) were isolated with a variety of solvates and, in one case, as a co-crystal with hydronium chloride. In particular, the initial synthesis of [1]Cl formed a co-crystal with hydronium and with CH2Cl2 solvate ([1]2[OH3Cl3] ⋅ CH2Cl2) upon isolation from acetone/CH2Cl2. Recrystallization of this from chloroform gave a dichloroform adduct [1]Cl ⋅ 2CHCl3, whereas treatment with ICl formed an octahalide cluster [1]2I4Cl4. The bromine salt [2]Br ⋅ C2H4Br2 was prepared by treatment of [1]Cl with dibromoethane and was isolated as a solvate. The hydronium cation was found as part of a hydronium trichloride cluster [OH3Cl3]2− and this, along with a partially-deuterated analogue of [OHD2Cl3]2− and [OD3Cl3]2−, was studied computationally and by mid- and far-infrared spectroscopy. Significant halogen bonds were found between 1+ or 2+ and chloride or bromide, respectively. On the other hand, the distance to the octahalide [I4Cl4]2− is too long for a halogen bond. Hydrogen bonding from the halides to the halomethane solvates is also significantly stronger than to the cation isopropyl groups. The geometries formed at the halide ions with respect to the halogen bond and strong hydrogen bonds are pyramidal with approximately orthogonal angles.
  • Item
    50 Years of the steric-blocking mechanism in vertebrate skeletal muscle: a retrospective
    (Springer Nature Switzerland AG, 2023-09) Parry DAD
    Fifty years have now passed since Parry and Squire proposed a detailed structural model that explained how tropomyosin, mediated by troponin, played a steric-blocking role in the regulation of vertebrate skeletal muscle. In this Special Issue dedicated to the memory of John Squire it is an opportune time to look back on this research and to appreciate John’s key contributions. A review is also presented of a selection of the developments and insights into muscle regulation that have occurred in the years since this proposal was formulated.