Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
Search Results
Item Bryde’s whale (Balaenoptera edeni) occurrence and foraging behaviour along the east coast of Australia(Taylor and Francis Group, 2024-10-09) Pirotta V; Cagnazzi D; Dixon B; Millar S; Millar J; Pickering G; Butcher PA; Stockin KA; Peters KJDespite their global occurrence in warm-temperate waters and their suspected non-migratory lifestyle, Bryde’s whales (Balaenoptera edeni spp.) are considered the least-known large baleen whale species. In Australian waters, information on their distribution, ecology and behaviour is scarce. This study documents Bryde’s whale occurrence and foraging behaviours along the Australian East Coast using opportunistic citizen science sightings via drone aerial photography, vessel and land-based observations. We observed foraging in both shallow (seafloor visible, beach and breaking waves present) and deep waters. We observed a range of foraging behaviours including lunge feeding (exhibited by individual whales and in pairs), sub-surface and surface skim feeding (shallow waters only) and described multispecies associations. We describe a potentially novel feeding behaviour in shallow waters, where Bryde’s whales are feeding directly within or behind the surf break (shallow water surf feeding). We quantify the presence of mother-calf pairs in Australian waters, highlighting the use of these waters for potential calving. This study provides insights into Bryde’s whale occurrence and foraging behaviour in both shallow and deep waters of eastern Australia.Item Applying equineRSU and seasonal livestock correction to wider equine stud farm types(Taylor and Francis Group, 2024-09-12) Chin YY; Airey H; Horne DJ; Gee EK; Back PJ; Sclater J; Rogers CW; Sneddon NTo adjust for potential overestimations in the nitrogen excretion by horses within Overseer®, a revised stock unit system has been proposed (equineRSU). These equineRSU were generated and validated using a medium-sized equine farm as a model farm. The aim of this study was to test the application of the equineRSU and seasonal stock number adjustment on a more complex farming model. Livestock numbers and management data were captured prospectively for the base property (128.8 ha) of a large multi-property commercial breeding stud (3 support properties, 556 ha total area) between June 2022 and May 2023. The monthly on-farm metabolisable energy (ME) requirement and pasture demand were deterministically modelled with both a customised feed budget using livestock class and weight or using the equineRSU and monthly adjusted stock numbers. There were multiple complex movements of horses on and off the property in the different stock classes across the year, with stock management reflecting seasonal periods of high stocking density. There was good agreement (6% variance) between actual ME demand (complex feed budget) and estimated feed demand (simplistic equineRSU model) of 4,387,187 MJ vs 4,102,770 MJ. This suggests that the equineRSU could be used on complex equine farm systems within Overseer®.Item Nourishing the Infant Gut Microbiome to Support Immune Health: Protocol of SUN (Seeding Through Feeding) Randomized Controlled Trial.(JMIR Publications, 2024-09-02) Wall CR; Roy NC; Mullaney JA; McNabb WC; Gasser O; Fraser K; Altermann E; Young W; Cooney J; Lawrence R; Jiang Y; Galland BC; Fu X; Tonkie JN; Mahawar N; Lovell AL; Ma SBackground: The introduction of complementary foods during the first year of life influences the diversity of the gut microbiome. How this diversity affects immune development and health is unclear. Objective: This study evaluates the effect of consuming kūmara or kūmara with added banana powder (resistant starch) compared to a reference control at 4 months post randomization on the prevalence of respiratory tract infections and the development of the gut microbiome. Methods: This study is a double-blind, randomized controlled trial of mothers and their 6-month-old infants (up to n=300) who have not yet started solids. Infants are randomized into one of 3 groups: control arm (C), standard kūmara intervention (K), and a kūmara intervention with added banana powder product (K+) to be consumed daily for 4 months until the infant is approximately 10 months old. Infants are matched for sex using stratified randomization. Data are collected at baseline (prior to commencing solid food) and at 2 and 4 months after commencing solid food (at around 8 and 10 months of age). Data and samples collected at each timepoint include weight and length, intervention adherence (months 2 and 4), illness and medication history, dietary intake (months 2 and 4), sleep (diary and actigraphy), maternal dietary intake, breast milk, feces (baseline and 4 months), and blood samples (baseline and 4 months). Results: The trial was approved by the Health and Disability Ethics Committee of the Ministry of Health, New Zealand (reference 20/NTA/9). Recruitment and data collection did not commence until January 2022 due to the COVID-19 pandemic. Data collection and analyses are expected to conclude in January 2024 and early 2025, respectively. Results are to be published in 2024 and 2025. Conclusions: The results of this study will help us understand how the introduction of a specific prebiotic complementary food affects the microbiota and relative abundances of the microbial species, the modulation of immune development, and infant health. It will contribute to the expanding body of research that aims to deepen our understanding of the connections between nutrition, gut microbiota, and early-life postnatal health. Trial Registration: Australian New Zealand Clinical Trials Registry ACTRN12620000026921; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=378654 International Registered Report Identifier (IRRID): DERR1-10.2196/56772 JMIR Res Protoc 2024;13:e56772
