Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 10 of 18
  • Item
    Artificial Intelligence-Enabled DDoS Detection for Blockchain-Based Smart Transport Systems.
    (MDPI (Basel, Switzerland), 2021-12-22) Liu T; Sabrina F; Jang-Jaccard J; Xu W; Wei Y
    A smart public transport system is expected to be an integral part of our human lives to improve our mobility and reduce the effect of our carbon footprint. The safety and ongoing maintenance of the smart public transport system from cyberattacks are vitally important. To provide more comprehensive protection against potential cyberattacks, we propose a novel approach that combines blockchain technology and a deep learning method that can better protect the smart public transport system. By the creation of signed and verified blockchain blocks and chaining of hashed blocks, the blockchain in our proposal can withstand unauthorized integrity attack that tries to forge sensitive transport maintenance data and transactions associated with it. A hybrid deep learning-based method, which combines autoencoder (AE) and multi-layer perceptron (MLP), in our proposal can effectively detect distributed denial of service (DDoS) attempts that can halt or block the urgent and critical exchange of transport maintenance data across the stakeholders. The experimental results of the hybrid deep learning evaluated on three different datasets (i.e., CICDDoS2019, CIC-IDS2017, and BoT-IoT) show that our deep learning model is effective to detect a wide range of DDoS attacks achieving more than 95% F1-score across all three datasets in average. The comparison of our approach with other similar methods confirms that our approach covers a more comprehensive range of security properties for the smart public transport system.
  • Item
    Static Hand Gesture Recognition Using Capacitive Sensing and Machine Learning
    (MDPI AG, 24/03/2023) Noble F; Xu M; Alam F
    Automated hand gesture recognition is a key enabler of Human-to-Machine Interfaces (HMIs) and smart living. This paper reports the development and testing of a static hand gesture recognition system using capacitive sensing. Our system consists of a 6×18 array of capacitive sensors that captured five gestures-Palm, Fist, Middle, OK, and Index-of five participants to create a dataset of gesture images. The dataset was used to train Decision Tree, Naïve Bayes, Multi-Layer Perceptron (MLP) neural network, and Convolutional Neural Network (CNN) classifiers. Each classifier was trained five times; each time, the classifier was trained using four different participants' gestures and tested with one different participant's gestures. The MLP classifier performed the best, achieving an average accuracy of 96.87% and an average F1 score of 92.16%. This demonstrates that the proposed system can accurately recognize hand gestures and that capacitive sensing is a viable method for implementing a non-contact, static hand gesture recognition system.
  • Item
    Exploring spiral narratives with immediate feedback in immersive virtual reality serious games for earthquake emergency training
    (1/01/2023) Feng Z; González VA; Mutch C; Amor R; Cabrera-Guerrero G
    Various attempts and approaches have been made to teach individuals about the knowledge of best practice for earthquake emergencies. Among them, Immersive Virtual Reality Serious Games (IVR SGs) have been suggested as an effective tool for emergency training. The notion of IVR SGs is consistent with the concept of problem-based gaming (PBG), where trainees interact with games in a loop of forming a playing strategy, applying the strategy, observing consequences, and making reflection. PBG triggers reflection-on-action, enabling trainees to reform perceptions and establish knowledge after making a response to a scenario. However, in the literature of PBG, little effort has been made for trainees to reflect while they are making a response (i.e., reflection-in-action) in a scenario. In addition, trainees do not have the possibility to adjust their responses and reshape their behaviors according to their reflection-in-action. In order to overcome these limitations, this study proposes a game mechanism, which integrates spiral narratives with immediate feedback, to underpin reflection-in-action and reflective redo in PBG. An IVR SG training system suited to earthquake emergency training was developed, incorporating the proposed game mechanism. A controlled experiment with 99 university students and staff was conducted. Participants were divided into three groups, with three interventions tested: a spiral narrated IVR SG, a linear narrated IVR SG, and a leaflet. Both narrated IVR SGs were effective in terms of immediate knowledge gain and self-efficacy improvement. However, challenges and opportunities for future research have been suggested.
  • Item
    Analysis of Depth Cameras for Proximal Sensing of Grapes
    (MDPI (Basel, Switzerland), 2022-06) Parr B; Legg M; Alam F
    This work investigates the performance of five depth cameras in relation to their potential for grape yield estimation. The technologies used by these cameras include structured light (Kinect V1), active infrared stereoscopy (RealSense D415), time of flight (Kinect V2 and Kinect Azure), and LiDAR (Intel L515). To evaluate their suitability for grape yield estimation, a range of factors were investigated including their performance in and out of direct sunlight, their ability to accurately measure the shape of the grapes, and their potential to facilitate counting and sizing of individual berries. The depth cameras’ performance was benchmarked using high-resolution photogrammetry scans. All the cameras except the Kinect V1 were able to operate in direct sunlight. Indoors, the RealSense D415 camera provided the most accurate depth scans of grape bunches, with a 2 mm average depth error relative to photogrammetric scans. However, its performance was reduced in direct sunlight. The time of flight and LiDAR cameras provided depth scans of grapes that had about an 8 mm depth bias. Furthermore, the individual berries manifested in the scans as pointed shape distortions. This led to an underestimation of berry sizes when applying the RANSAC sphere fitting but may help with the detection of individual berries with more advanced algorithms. Applying an opaque coating to the surface of the grapes reduced the observed distance bias and shape distortion. This indicated that these are likely caused by the cameras’ transmitted light experiencing diffused scattering within the grapes. More work is needed to investigate if this distortion can be used for enhanced measurement of grape properties such as ripeness and berry size.
  • Item
    Low-Cost Sensor for Continuous Measurement of Brix in Liquids
    (MDPI AG, 25/11/2022) Jaywant SA; Singh H; Arif K
    This paper presents a Brix sensor based on the differential pressure measurement principle. Two piezoresistive silicon pressure sensors were applied to measure the specific gravity of the liquid, which was used to calculate the Brix level. The pressure sensors were mounted inside custom-built water-tight housings connected together by fixed length metallic tubes containing the power and signal cables. Two designs of the sensor were prepared; one for the basic laboratory testing and validation of the proposed system and the other for a fermentation experiment. For lab tests, a sugar solution with different Brix levels was used and readings from the proposed sensor were compared with a commercially available hydrometer called Tilt. During the fermentation experiments, fermentation was carried out in a 1000 L tank over 7 days and data was recorded and analysed. In the lab experiments, a good linear relationship between the sugar content and the corresponding Brix levels was observed. In the fermentation experiment, the sensor performed as expected but some problems such as residue build up were encountered. Overall, the proposed sensing solution carries a great potential for continuous monitoring of the Brix level in liquids. Due to the usage of low-cost pressure sensors and the interface electronics, the cost of the system is considered suitable for large scale deployment at wineries or juice processing industries.
  • Item
    Low-Cost CO Sensor Calibration Using One Dimensional Convolutional Neural Network
    (MDPI AG, 11/01/2023) Ali S; Alam F; Arif K; Potgieter J-G
    The advent of cost-effective sensors and the rise of the Internet of Things (IoT) presents the opportunity to monitor urban pollution at a high spatio-temporal resolution. However, these sensors suffer from poor accuracy that can be improved through calibration. In this paper, we propose to use One Dimensional Convolutional Neural Network (1DCNN) based calibration for low-cost carbon monoxide sensors and benchmark its performance against several Machine Learning (ML) based calibration techniques. We make use of three large data sets collected by research groups around the world from field-deployed low-cost sensors co-located with accurate reference sensors. Our investigation shows that 1DCNN performs consistently across all datasets. Gradient boosting regression, another ML technique that has not been widely explored for gas sensor calibration, also performs reasonably well. For all datasets, the introduction of temperature and relative humidity data improves the calibration accuracy. Cross-sensitivity to other pollutants can be exploited to improve the accuracy further. This suggests that low-cost sensors should be deployed as a suite or an array to measure covariate factors.
  • Item
    Hyperledger Fabric Blockchain for Securing the Edge Internet of Things
    (MDPI (Basel, Switzerland), 7/01/2021) Pajooh HH; Rashid M; Alam F; Demidenko S
    Providing security and privacy to the Internet of Things (IoT) networks while achieving it with minimum performance requirements is an open research challenge. Blockchain technology, as a distributed and decentralized ledger, is a potential solution to tackle the limitations of the current peer-to-peer IoT networks. This paper presents the development of an integrated IoT system implementing the permissioned blockchain Hyperledger Fabric (HLF) to secure the edge computing devices by employing a local authentication process. In addition, the proposed model provides traceability for the data generated by the IoT devices. The presented solution also addresses the IoT systems’ scalability challenges, the processing power and storage issues of the IoT edge devices in the blockchain network. A set of built-in queries is leveraged by smart-contracts technology to define the rules and conditions. The paper validates the performance of the proposed model with practical implementation by measuring performance metrics such as transaction throughput and latency, resource consumption, and network use. The results show that the proposed platform with the HLF implementation is promising for the security of resource-constrained IoT devices and is scalable for deployment in various IoT scenarios.
  • Item
    Identity and Gender Recognition Using a Capacitive Sensing Floor and Neural Networks
    (MDPI AG, 23/09/2022) Konings D; Alam F; Faulkner N; de Jong C
    In recent publications, capacitive sensing floors have been shown to be able to localize individuals in an unobtrusive manner. This paper demonstrates that it might be possible to utilize the walking characteristics extracted from a capacitive floor to recognize subject and gender. Several neural network-based machine learning techniques are developed for recognizing the gender and identity of a target. These algorithms were trained and validated using a dataset constructed from the information captured from 23 subjects while walking, alone, on the sensing floor. A deep neural network comprising a Bi-directional Long Short-Term Memory (BLSTM) provided the most accurate identity performance, classifying individuals with an accuracy of 98.12% on the test data. On the other hand, a Convolutional Neural Network (CNN) was the most accurate for gender recognition, attaining an accuracy of 93.3%. The neural network-based algorithms are benchmarked against Support Vector Machine (SVM), which is a classifier used in many reported works for floor-based recognition tasks. The majority of the neural networks outperform SVM across all accuracy metrics.
  • Item
    Initialization-similarity clustering algorithm
    (Springer Science+Business Media, LLC, 2019-12) Liu T; Zhu J; Zhou J; Zhu Y; Zhu X
    Classic k-means clustering algorithm randomly selects centroids for initialization to possibly output unstable clustering results. Moreover, random initialization makes the clustering result hard to reproduce. Spectral clustering algorithm is a two-step strategy, which first generates a similarity matrix and then conducts eigenvalue decomposition on the Laplacian matrix of the similarity matrix to obtain the spectral representation. However, the goal of the first step in the spectral clustering algorithm does not guarantee the best clustering result. To address the above issues, this paper proposes an Initialization-Similarity (IS) algorithm which learns the similarity matrix and the new representation in a unified way and fixes initialization using the sum-of-norms regularization to make the clustering more robust. The experimental results on ten real-world benchmark datasets demonstrate that our IS clustering algorithm outperforms the comparison clustering algorithms in terms of three evaluation metrics for clustering algorithm including accuracy (ACC), normalized mutual information (NMI), and Purity.
  • Item
    Sensors and Instruments for Brix Measurement: A Review
    (MDPI AG, 16/03/2022) Jaywant SA; Singh H; Arif KM
    Quality assessment of fruits, vegetables, or beverages involves classifying the products according to the quality traits such as, appearance, texture, flavor, sugar content. The measurement of sugar content, or Brix, as it is commonly known, is an essential part of the quality analysis of the agricultural products and alcoholic beverages. The Brix monitoring of fruit and vegetables by destructive methods includes sensory assessment involving sensory panels, instruments such as refractometer, hydrometer, and liquid chromatography. However, these techniques are manual, time-consuming, and most importantly, the fruits or vegetables are damaged during testing. On the other hand, the traditional sample-based methods involve manual sample collection of the liquid from the tank in fruit/vegetable juice making and in wineries or breweries. Labour ineffectiveness can be a significant drawback of such methods. This review presents recent developments in different destructive and nondestructive Brix measurement techniques focused on fruits, vegetables, and beverages. It is concluded that while there exist a variety of methods and instruments for Brix measurement, traits such as promptness and low cost of analysis, minimal sample preparation, and environmental friendliness are still among the prime requirements of the industry.