Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
6 results
Search Results
Item Accurate machine learning model for human embryo morphokinetic stage detection(Springer Science+Business Media, LLC, 2025-08-20) Misaghi H; Cree L; Knowlton NPurpose: The ability to detect, monitor, and precisely time the morphokinetic stages of human pre-implantation embryo development plays a critical role in assessing their viability and potential for successful implantation. Therefore, there is a need for accurate and accessible tools to analyse embryos. This work describes a highly accurate, machine learning model designed to predict 17 morphokinetic stages of pre-implantation human development, an improvement on existing models. This model provides a robust tool for researchers and clinicians, enabling the automation of morphokinetic stage prediction, standardising the process, and reducing subjectivity between clinics. Method: A computer vision model was built on a publicly available dataset for embryo Morphokinetic stage detection. The dataset contained 273,438 labelled images based on Embryoscope/ + © embryo images. The dataset was split 70/10/20 into training/validation/test sets. Two different deep learning architectures were trained and tested, one using EfficientNet-V2-Large and the other using EfficientNet-V2-Large with the addition of fertilisation time as input. A new postprocessing algorithm was developed to reduce noise in the predictions of the deep learning model and detect the exact time of each morphokinetic stage change. Results: The proposed model reached an overall test F1-score of 0.881 and accuracy of 87% across 17 morphokinetic stages on an independent test set. Conclusion: The proposed model shows a 17% accuracy improvement, compared to the best models on the same dataset. Therefore, our model can accurately detect morphokinetic stages in static embryo images as well as detecting the exact timings of stage changes in a complete time-lapse video.Item AI-based discovery of habitats from museum collections(Cell Press, 2024-04-02) Jones CB; Stock K; Perkins SEMuseum collection records are a source of historic data for species occurrence, but little attention is paid to the associated descriptions of habitat at the sample locations. We propose that artificial intelligence methods have potential to use these descriptions for reconstructing past habitat, to address ecological and evolutionary questions.Item Variable Selection from Image Texture Feature for Automatic Classification of Concrete Surface Voids.(Hindawi Limited, 2021-03-08) Zhao Z; Liu T; Zhao X; Haber REMachine learning plays an important role in computational intelligence and has been widely used in many engineering fields. Surface voids or bugholes frequently appearing on concrete surface after the casting process make the corresponding manual inspection time consuming, costly, labor intensive, and inconsistent. In order to make a better inspection of the concrete surface, automatic classification of concrete bugholes is needed. In this paper, a variable selection strategy is proposed for pursuing feature interpretability, together with an automatic ensemble classification designed for getting a better accuracy of the bughole classification. A texture feature deriving from the Gabor filter and gray-level run lengths is extracted in concrete surface images. Interpretable variables, which are also the components of the feature, are selected according to a presented cumulative voting strategy. An ensemble classifier with its base classifier automatically assigned is provided to detect whether a surface void exists in an image or not. Experimental results on 1000 image samples indicate the effectiveness of our method with a comparable prediction accuracy and model explicable.Item Mitigating cognitive biases in developing AI-assisted recruitment systems: A knowledge-sharing approach(IGI Global, 2022) Soleimani M; Intezari A; Pauleen DJArtificial intelligence (AI) is increasingly embedded in business processes, including the human resource (HR) recruitment process. While AI can expedite the recruitment process, evidence from the industry, however, shows that AI-recruitment systems (AIRS) may fail to achieve unbiased decisions about applicants. There are risks of encoding biases in the datasets and algorithms of AI which lead AIRS to replicate and amplify human biases. To develop less biased AIRS, collaboration between HR managers and AI developers for training algorithms and exploring algorithmic biases is vital. Using an exploratory research design, 35 HR managers and AI developers globally were interviewed to understand the role of knowledge sharing during their collaboration in mitigating biases in AIRS. The findings show that knowledge sharing can help to mitigate biases in AIRS by informing data labeling, understanding job functions, and improving the machine learning model. Theoretical contributions and practical implications are suggested.Item Artificial intelligence: An eye cast towards the mental health nursing horizon(John Wiley & Sons Australia Ltd, 2023-06) Wilson RL; Higgins O; Atem J; Donaldson AE; Gildberg FA; Hooper M; Hopwood M; Rosado S; Solomon B; Ward K; Welsh BThere has been an international surge towards online, digital, and telehealth mental health services, further amplified during COVID-19. Implementation and integration of technological innovations, including artificial intelligence (AI), have increased with the intention to improve clinical, governance, and administrative decision-making. Mental health nurses (MHN) should consider the ramifications of these changes and reflect on their engagement with AI. It is time for mental health nurses to demonstrate leadership in the AI mental health discourse and to meaningfully advocate that safety and inclusion of end users' of mental health service interests are prioritized. To date, very little literature exists about this topic, revealing limited engagement by MHNs overall. The aim of this article is to provide an overview of AI in the mental health context and to stimulate discussion about the rapidity and trustworthiness of AI related to the MHN profession. Despite the pace of progress, and personal life experiences with AI, a lack of MHN leadership about AI exists. MHNs have a professional obligation to advocate for access and equity in health service distribution and provision, and this applies to digital and physical domains. Trustworthiness of AI supports access and equity, and for this reason, it is of concern to MHNs. MHN advocacy and leadership are required to ensure that misogynist, racist, discriminatory biases are not favoured in the development of decisional support systems and training sets that strengthens AI algorithms. The absence of MHNs in designing technological innovation is a risk related to the adequacy of the generation of services that are beneficial for vulnerable people such as tailored, precise, and streamlined mental healthcare provision. AI developers are interested to focus on person-like solutions; however, collaborations with MHNs are required to ensure a person-centred approach for future mental healthcare is not overlooked.Item Smart automotive technology adherence to the law: (de)constructing road rules for autonomous system development, verification and safety(Oxford University Press, 22/02/2022) McLachlan S; Neil M; Dube K; Bogani R; Fenton N; Schaffer BDriving is an intuitive task that requires skill, constant alertness and vigilance for unexpected events. The driving task also requires long concentration spans, focusing on the entire task for prolonged periods, and sophisticated negotiation skills with other road users including wild animals. Modern motor vehicles include an array of smart assistive and autonomous driving systems capable of subsuming some, most, or in limited cases, all of the driving task. Building these smart automotive systems requires software developers with highly technical software engineering skills, and now a lawyer’s in-depth knowledge of traffic legislation as well. This article presents an approach for deconstructing the complicated legalese of traffic law and representing its requirements and flow. Our approach (de)constructs road rules in legal terminology and specifies them in ‘structured English logic’ that is expressed as ‘Boolean logic’ for automation and ‘Lawmaps’ for visualization. We demonstrate an example using these tools leading to the construction and validation of a ‘Bayesian Network model’. We strongly believe these tools to be approachable by programmers and the general public, useful in development of Artificial Intelligence to underpin motor vehicle smart systems, and in validation to ensure these systems are considerate of the law when making decisions.
