Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
5 results
Search Results
Item Nanodelivery systems of thymoquinone for improving its bioavailability and efficiency in the food and biomedical applications(Elsevier B V, 2025-10-15) Shaddel R; Rashidinejad A; Karimkhani MM; Tarhan O; Jafari SMThymoquinone (TQ), a hydrophobic bioactive constituent of Nigella sativa seeds, has garnered attention for its potential in treating various ailments due to its antioxidative and anti-inflammatory properties. However, TQ's hydrophobicity, instability in varying pH environments, photosensitivity, rapid hepatic metabolism, and low bioavailability present major challenges for its application in pharmaceutical and nutraceutical formulations. Nanotechnology offers innovative nanocarriers that can overcome these limitations. Notable among these are lipid-based nanocarriers (e.g., nano-liposomes, nano-emulsions, niosomes, solid lipid nanoparticles, and nanostructured lipid carriers), biopolymeric systems (e.g., nano-hydrogels, nanofibers, nanotubes, and cyclodextrin inclusion complexes), and inorganic nanocarriers. These delivery systems are designed to enhance TQ's solubility, protect it from degradation, and improve its bioavailability and therapeutic performance. Despite numerous advances, the clinical and industrial translation of these nano-delivery systems remains limited, primarily due to scalability issues, regulatory constraints, and a lack of standardized evaluation protocols for food and biomedical use. This review provides a comprehensive analysis of these nanocarriers, emphasizing their mechanisms for TQ encapsulation, controlled release, and bioaccessibility enhancement. It also highlights current limitations and outlines future directions for their development. Unlike previous reviews, this work offers a comparative evaluation of nanocarrier systems for both food and biomedical applications, addressing their effectiveness, limitations, and readiness for real-world translation. The key takeaway is that among the various approaches, lipid-based and biopolymeric nanocarriers have demonstrated the greatest potential for enhancing TQ delivery, particularly in oral and functional food formulations, as well as targeted cancer therapy, due to their biocompatibility, scalability, and effective release profiles.Item Bioaccessibility and associated concepts: Terminology in the context of in vitro food digestion studies(Elsevier Ltd, 2025-09-01) Grundy MM-L; Deglaire A; Le Feunteun S; Reboul E; Moughan PJ; Wilde PJ; McClements DJ; Marze SIn vitro gastrointestinal models are widely used to study food digestion, in combination with analytical methods to determine the physicochemical and biochemical fate of food compounds. The in vitro bioaccessibility determined with these models is often used as an indicator of the in vivo bioavailability. However, the bioaccessibility concept is not used consistently within the scientific literature, leading to confusion and making it difficult to compare the results from different studies. The aim of this article is to provide standardized definitions of in vitro digestibility and bioaccessibility, detailing the main processes involved, including physical release, solubilization, and biochemical/metabolic reactions. The terminology of complementary cellular, ex vivo, and animal/human in vivo experiments is also given. Application of the in vitro terminology to different nutrients is discussed, including lipids, proteins, carbohydrates, vitamins, and other bioactive compounds. The proposed definitions unify most concepts related to the gastrointestinal fate of ingested food compounds.Item Whole-body protein kinetic models to quantify the anabolic response to dietary protein consumption(Elsevier Ltd d on behalf of European Society for Clinical Nutrition and Metabolism, 2021-04) Wolfe RR; Kim I-Y; Church DD; Moughan PJ; Park S; Ferrando AADetermination of whole body rates of protein synthesis, breakdown and net balance in human subjects still has an important role in nutrition research. Quantifying the anabolic response to dietary protein intake is a particularly important application. There are different models with which to accomplish this goal, each with advantages and limitations. The nitrogen (N)-flux method in which tracer is given orally has distinct advantages in terms of lack of invasiveness. In addition, the calculated results include all aspects of whole-body protein synthesis and breakdown. However, the prolonged timeframe of the method eliminates the possibility of the “pre-post” experimental design whereby each subject serves as their own control in the evaluation of the response to a meal. Models based on the primed-constant infusion of an essential amino acid (EAA) tracer enable the determination of baseline whole-body protein kinetics within 2 h, and can quantify a dynamic change from the basal state. The greatest challenge when using an EAA model is distinguishing exogenous and endogenous sources of the tracee in the blood. One approach is to use an intrinsically-labeled protein. This method has the advantage that the exogenous tracee is clearly distinguished from endogenous tracee. On the other hand, the intrinsically-labeled protein method suffers from unmeasured dilution that is likely to cause the systematic underestimation of the rate of appearance of exogenous tracee and thus overestimate the rate of whole-body protein breakdown. Alternatively, the “bioavailability” approach estimates the contribution of exogenous tracee to the peripheral circulation from the amount of tracee ingested, the true ileal digestibility of the tracee, and the irreversible loss of tracee prior to entry into the peripheral circulation. Errors in assumed values with the bioavailability method can potentially be significant, but are not likely to result in the systematic over- or under-estimations of rates of whole-body protein synthesis and breakdown. The optimal method depends on the degree of uncertainty regarding required assumptions in a particular circumstance. With all methods, it is advisable to calculate upper and lower bounds of whole body protein kinetics, in accord with reasonable maximal and minimal assumed values. Simultaneous use of two methods requiring different assumptions can also serve to confirm the validity of single approach.Item The role of holistic nutritional properties of diets in the assessment of food system and dietary sustainability(Taylor and Francis Group, 2023) Dave LA; Hodgkinson SM; Roy NC; Smith NW; McNabb WCAdvancing sustainable diets for nutrition security and sustainable development necessitates clear nutrition metrics for measuring nutritional quality of diets. Food composition, nutrient requirements, and dietary intake are among the most common nutrition metrics used in the current assessment of sustainable diets. Broadly, most studies in the area classify animal-source foods (ASF) as having a substantially higher environmental footprint in comparison to plant-source foods (PSF). As a result, much of the current dietary advice promulgates diets containing higher proportions of PSF. However, this generalization is misleading since most of these studies do not distinguish between the gross and bioavailable nutrient fractions in mixed human diets. The bioavailability of essential nutrients including β-carotene, vitamin B-12, iron, zinc, calcium, and indispensable amino acids varies greatly across different diets. The failure to consider bioavailability in sustainability measurements undermines the complementary role that ASF play in achieving nutrition security in vulnerable populations. This article critically reviews the scientific evidence on the holistic nutritional quality of diets and identifies methodological problems that exist in the way the nutritional quality of diets is measured. Finally, we discuss the importance of developing nutrient bioavailability as a requisite nutrition metric to contextualize the environmental impacts of different diets.Item Recent advances in the conjugation approaches for enhancing the bioavailability of polyphenols(Elsevier Ltd, 2024-01) Sahraeian S; Rashidinejad A; Golmakani M-TIn recent years, the consumption of functional foods containing health-beneficial ingredients has become increasingly popular. Polyphenols are among the most important functional and bioactive molecules found in a variety of fresh produce and food products. However, the limited solubility of most polyphenols in water can significantly affect their bioavailability, thereby reducing their potential health benefits. To overcome this limitation, various approaches have been explored, including molecular enhancers, nanoparticles, encapsulation systems, and conjugation methods. In this review, we focus on recent advances in conjugation methods for enhancing the bioavailability of polyphenols. We provide a concise overview of the types of polyphenols and bioavailability determination methods and, subsequently, discuss the concept of conjugation methods, including different synthesizing methods, confirmation procedures, and the effects of conjugation on polysaccharides and polyphenols. Overall, this review provides a comprehensive update on recent advances in conjugation methods that can be used to improve the bioavailability of polyphenols and highlights the potential of these approaches to enhance the health benefits of polyphenol-rich foods.
