Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 5 of 5
  • Item
    Mwhitiwhiti Aotearoa: Phylogeny and synonymy of the silent alpine grasshopper radiation of New Zealand (Orthoptera: Acrididae)
    (Magnolia Press, 2023-12-11) Trewick SA; Koot EM; Morgan-Richards M
    Aotearoa New Zealand has a fauna of endemic alpine grasshoppers, consisting of thirteen species distributed among four genera. The many re-classifications of species within this group and the presence of species complexes highlight the uncertainty that surrounds relationships within and between these genera. High-throughput Next Generation Sequencing was used to assemble the complete mitochondrial genomes, 45S ribosomal cassettes and histone sequences of New Zealands four endemic alpine genera: Alpinacris, Brachaspis, Paprides and Sigaus. Phylogenetic analysis of these molecular datasets, as individual genes, partitions and combinations returned a consistent topology that is incompatible with the current classification. The genera Sigaus, Alpinacris, and Paprides all exhibit paraphyly. A consideration of the pronotum, epiphallus and terminalia of adult specimens reveals species-specific differences, but fails to provide compelling evidence for species groups justifying distinct genera. In combination with phylogenetic, morphological and spatial evidence we propose a simplified taxonomy consisting of a single genus for the mwhitiwhiti Aotearoa species radiation.
  • Item
    Genome Evolution and Introgression in the New Zealand mud Snails Potamopyrgus estuarinus and Potamopyrgus kaitunuparaoa
    (Oxford University Press on behalf of Society for Molecular Biology and Evolution, 2024-05-22) Fields PD; Jalinsky JR; Bankers L; McElroy KE; Sharbrough J; Higgins C; Morgan-Richards M; Boore JL; Neiman M; Logsdon JM
    We have sequenced, assembled, and analyzed the nuclear and mitochondrial genomes and transcriptomes of Potamopyrgus estuarinus and Potamopyrgus kaitunuparaoa, two prosobranch snail species native to New Zealand that together span the continuum from estuary to freshwater. These two species are the closest known relatives of the freshwater species Potamopyrgus antipodarum-a model for studying the evolution of sex, host-parasite coevolution, and biological invasiveness-and thus provide key evolutionary context for understanding its unusual biology. The P. estuarinus and P. kaitunuparaoa genomes are very similar in size and overall gene content. Comparative analyses of genome content indicate that these two species harbor a near-identical set of genes involved in meiosis and sperm functions, including seven genes with meiosis-specific functions. These results are consistent with obligate sexual reproduction in these two species and provide a framework for future analyses of P. antipodarum-a species comprising both obligately sexual and obligately asexual lineages, each separately derived from a sexual ancestor. Genome-wide multigene phylogenetic analyses indicate that P. kaitunuparaoa is likely the closest relative to P. antipodarum. We nevertheless show that there has been considerable introgression between P. estuarinus and P. kaitunuparaoa. That introgression does not extend to the mitochondrial genome, which appears to serve as a barrier to hybridization between P. estuarinus and P. kaitunuparaoa. Nuclear-encoded genes whose products function in joint mitochondrial-nuclear enzyme complexes exhibit similar patterns of nonintrogression, indicating that incompatibilities between the mitochondrial and the nuclear genome may have prevented more extensive gene flow between these two species.
  • Item
    Ancient mitochondrial genomes unveil the origins and evolutionary history of New Zealand's enigmatic takahē and moho
    (John Wiley and Sons, 2024-02) Verry AJF; Mas-Carrió E; Gibb GC; Dutoit L; Robertson BC; Waters JM; Rawlence NJ; Gillespie R
    Many avian species endemic to Aotearoa New Zealand were driven to extinction or reduced to relict populations following successive waves of human arrival, due to hunting, habitat destruction and the introduction of mammalian predators. Among the affected species were the large flightless South Island takahē (Porphyrio hochstetteri) and the moho (North Island takahē; P. mantelli), with the latter rendered extinct and the former reduced to a single relictual population. Little is known about the evolutionary history of these species prior to their decline and/or extinction. Here we sequenced mitochondrial genomes from takahē and moho subfossils (12 takahē and 4 moho) and retrieved comparable sequence data from takahē museum skins (n = 5) and contemporary individuals (n = 17) to examine the phylogeny and recent evolutionary history of these species. Our analyses suggest that prehistoric takahē populations lacked deep phylogeographic structure, in contrast to moho, which exhibited significant spatial genetic structure, albeit based on limited sample sizes (n = 4). Temporal genetic comparisons show that takahē have lost much of their mitochondrial genetic diversity, likely due to a sudden demographic decline soon after human arrival (~750 years ago). Time-calibrated phylogenetic analyses strongly support a sister species relationship between takahē and moho, suggesting these flightless taxa diverged around 1.5 million years ago, following a single colonisation of New Zealand by a flighted Porphyrio ancestor approximately 4 million years ago. This study highlights the utility of palaeogenetic approaches for informing the conservation and systematic understanding of endangered species whose ranges have been severely restricted by anthropogenic impacts.
  • Item
    Comparative Analyses of Complete Peronosporaceae (Oomycota) Mitogenome Sequences-Insights into Structural Evolution and Phylogeny.
    (Oxford University Press on behalf of the Society for Molecular Biology and Evolution, 2022-04-19) Winkworth RC; Neal G; Ogas RA; Nelson BCW; McLenachan PA; Bellgard SE; Lockhart PJ
    Members of the Peronosporaceae (Oomycota, Chromista), which currently consists of 25 genera and approximately 1,000 recognized species, are responsible for disease on a wide range of plant hosts. Molecular phylogenetic analyses over the last two decades have improved our understanding of evolutionary relationships within Peronosporaceae. To date, 16 numbered and three named clades have been recognized; it is clear from these studies that the current taxonomy does not reflect evolutionary relationships. Whole organelle genome sequences are an increasingly important source of phylogenetic information, and in this study, we present comparative and phylogenetic analyses of mitogenome sequences from 15 of the 19 currently recognized clades of Peronosporaceae, including 44 newly assembled sequences. Our analyses suggest strong conservation of mitogenome size and gene content across Peronosporaceae but, as previous studies have suggested, limited conservation of synteny. Specifically, we identified 28 distinct syntenies amongst the 71 examined isolates. Moreover, 19 of the isolates contained inverted or direct repeats, suggesting repeated sequences may be more common than previously thought. In terms of phylogenetic relationships, our analyses of 34 concatenated mitochondrial gene sequences resulted in a topology that was broadly consistent with previous studies. However, unlike previous studies concatenated mitochondrial sequences provided strong support for higher-level relationships within the family.
  • Item
    The mitogenome of Phytophthora agathidicida: Evidence for a not so recent arrival of the "kauri killing" Phytophthora in New Zealand
    (PLOS, 2021-05-21) Winkworth RC; Bellgard SE; McLenachan PA; Lockhart PJ; Blair JE
    Phytophthora agathidicida is associated with a root rot that threatens the long-term survival of the iconic New Zealand kauri. Although it is widely assumed that this pathogen arrived in New Zealand post-1945, this hypothesis has yet to be formally tested. Here we describe evolutionary analyses aimed at evaluating this and two alternative hypotheses. As a basis for our analyses, we assembled complete mitochondrial genome sequences from 16 accessions representing the geographic range of P. agathidicida as well as those of five other members of Phytophthora clade 5. All 21 mitogenome sequences were very similar, differing little in size with all sharing the same gene content and arrangement. We first examined the temporal origins of genetic diversity using a pair of calibration schemes. Both resulted in similar age estimates; specifically, a mean age of 303.0-304.4 years and 95% HPDs of 206.9-414.6 years for the most recent common ancestor of the included isolates. We then used phylogenetic tree building and network analyses to investigate the geographic distribution of the genetic diversity. Four geographically distinct genetic groups were recognised within P. agathidicida. Taken together the inferred age and geographic distribution of the sampled mitogenome diversity suggests that this pathogen diversified following arrival in New Zealand several hundred to several thousand years ago. This conclusion is consistent with the emergence of kauri dieback disease being a consequence of recent changes in the relationship between the pathogen, host, and environment rather than a post-1945 introduction of the causal pathogen into New Zealand.