Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
10 results
Search Results
Item Machine learning prediction of sleep stages in dairy cows from heart rate and muscle activity measures.(Springer Nature Limited, 2021-05-25) Hunter LB; Baten A; Haskell MJ; Langford FM; O'Connor C; Webster JR; Stafford KSleep is important for cow health and shows promise as a tool for assessing welfare, but methods to accurately distinguish between important sleep stages are difficult and impractical to use with cattle in typical farm environments. The objective of this study was to determine if data from more easily applied non-invasive devices assessing neck muscle activity and heart rate (HR) alone could be used to differentiate between sleep stages. We developed, trained, and compared two machine learning models using neural networks and random forest algorithms to predict sleep stages from 15 variables (features) of the muscle activity and HR data collected from 12 cows in two environments. Using k-fold cross validation we compared the success of the models to the gold standard, Polysomnography (PSG). Overall, both models learned from the data and were able to accurately predict sleep stages from HR and muscle activity alone with classification accuracy in the range of similar human models. Further research is required to validate the models with a larger sample size, but the proposed methodology appears to give an accurate representation of sleep stages in cattle and could consequentially enable future sleep research into conditions affecting cow sleep and welfare.Item Variable Selection from Image Texture Feature for Automatic Classification of Concrete Surface Voids.(Hindawi Limited, 2021-03-08) Zhao Z; Liu T; Zhao X; Haber REMachine learning plays an important role in computational intelligence and has been widely used in many engineering fields. Surface voids or bugholes frequently appearing on concrete surface after the casting process make the corresponding manual inspection time consuming, costly, labor intensive, and inconsistent. In order to make a better inspection of the concrete surface, automatic classification of concrete bugholes is needed. In this paper, a variable selection strategy is proposed for pursuing feature interpretability, together with an automatic ensemble classification designed for getting a better accuracy of the bughole classification. A texture feature deriving from the Gabor filter and gray-level run lengths is extracted in concrete surface images. Interpretable variables, which are also the components of the feature, are selected according to a presented cumulative voting strategy. An ensemble classifier with its base classifier automatically assigned is provided to detect whether a surface void exists in an image or not. Experimental results on 1000 image samples indicate the effectiveness of our method with a comparable prediction accuracy and model explicable.Item The Use of Triaxial Accelerometers and Machine Learning Algorithms for Behavioural Identification in Domestic Dogs (Canis familiaris): A Validation Study(MDPI (Basel, Switzerland), 2024-09-13) Redmond C; Smit M; Draganova I; Corner-Thomas R; Thomas D; Andrews C; Fullwood DT; Bowden AEAssessing the behaviour and physical attributes of domesticated dogs is critical for predicting the suitability of animals for companionship or specific roles such as hunting, military or service. Common methods of behavioural assessment can be time consuming, labour-intensive, and subject to bias, making large-scale and rapid implementation challenging. Objective, practical and time effective behaviour measures may be facilitated by remote and automated devices such as accelerometers. This study, therefore, aimed to validate the ActiGraph® accelerometer as a tool for behavioural classification. This study used a machine learning method that identified nine dog behaviours with an overall accuracy of 74% (range for each behaviour was 54 to 93%). In addition, overall body dynamic acceleration was found to be correlated with the amount of time spent exhibiting active behaviours (barking, locomotion, scratching, sniffing, and standing; R2 = 0.91, p < 0.001). Machine learning was an effective method to build a model to classify behaviours such as barking, defecating, drinking, eating, locomotion, resting-asleep, resting-alert, sniffing, and standing with high overall accuracy whilst maintaining a large behavioural repertoire.Item The Use of Triaxial Accelerometers and Machine Learning Algorithms for Behavioural Identification in Domestic Cats (Felis catus): A Validation Study(MDPI (Basel, Switzerland), 2023-08-14) Smit M; Ikurior SJ; Corner-Thomas RA; Andrews CJ; Draganova I; Thomas DG; Vanwanseele BAnimal behaviour can be an indicator of health and welfare. Monitoring behaviour through visual observation is labour-intensive and there is a risk of missing infrequent behaviours. Twelve healthy domestic shorthair cats were fitted with triaxial accelerometers mounted on a collar and harness. Over seven days, accelerometer and video footage were collected simultaneously. Identifier variables (n = 32) were calculated from the accelerometer data and summarized into 1 s epochs. Twenty-four behaviours were annotated from the video recordings and aligned with the summarised accelerometer data. Models were created using random forest (RF) and supervised self-organizing map (SOM) machine learning techniques for each mounting location. Multiple modelling rounds were run to select and merge behaviours based on performance values. All models were then tested on a validation accelerometer dataset from the same twelve cats to identify behaviours. The frequency of behaviours was calculated and compared using Dirichlet regression. Despite the SOM models having higher Kappa (>95%) and overall accuracy (>95%) compared with the RF models (64-76% and 70-86%, respectively), the RF models predicted behaviours more consistently between mounting locations. These results indicate that triaxial accelerometers can identify cat specific behaviours.Item How Lazy Are Pet Cats Really? Using Machine Learning and Accelerometry to Get a Glimpse into the Behaviour of Privately Owned Cats in Different Households(MDPI (Basel, Switzerland), 2024-04-19) Smit M; Corner-Thomas R; Draganova I; Andrews C; Thomas D; Friedrich CMSurprisingly little is known about how the home environment influences the behaviour of pet cats. This study aimed to determine how factors in the home environment (e.g., with or without outdoor access, urban vs. rural, presence of a child) and the season influences the daily behaviour of cats. Using accelerometer data and a validated machine learning model, behaviours including being active, eating, grooming, littering, lying, scratching, sitting, and standing were quantified for 28 pet cats. Generalized estimating equation models were used to determine the effects of different environmental conditions. Increasing cat age was negatively correlated with time spent active (p < 0.05). Cats with outdoor access (n = 18) were less active in winter than in summer (p < 0.05), but no differences were observed between seasons for indoor-only (n = 10) cats. Cats living in rural areas (n = 7) spent more time eating than cats in urban areas (n = 21; p < 0.05). Cats living in single-cat households (n = 12) spent more time lying but less time sitting than cats living in multi-cat households (n = 16; p < 0.05). Cats in households with at least one child (n = 20) spent more time standing in winter (p < 0.05), and more time lying but less time sitting in summer compared to cats in households with no children (n = 8; p < 0.05). This study clearly shows that the home environment has a major impact on cat behaviour.Item Identifying important microbial and genomic biomarkers for differentiating right- versus left-sided colorectal cancer using random forest models(BioMed Central Ltd, 2023-07-11) Kolisnik T; Sulit AK; Schmeier S; Frizelle F; Purcell R; Smith A; Silander OBACKGROUND: Colorectal cancer (CRC) is a heterogeneous disease, with subtypes that have different clinical behaviours and subsequent prognoses. There is a growing body of evidence suggesting that right-sided colorectal cancer (RCC) and left-sided colorectal cancer (LCC) also differ in treatment success and patient outcomes. Biomarkers that differentiate between RCC and LCC are not well-established. Here, we apply random forest (RF) machine learning methods to identify genomic or microbial biomarkers that differentiate RCC and LCC. METHODS: RNA-seq expression data for 58,677 coding and non-coding human genes and count data for 28,557 human unmapped reads were obtained from 308 patient CRC tumour samples. We created three RF models for datasets of human genes-only, microbes-only, and genes-and-microbes combined. We used a permutation test to identify features of significant importance. Finally, we used differential expression (DE) and paired Wilcoxon-rank sum tests to associate features with a particular side. RESULTS: RF model accuracy scores were 90%, 70%, and 87% with area under curve (AUC) of 0.9, 0.76, and 0.89 for the human genomic, microbial, and combined feature sets, respectively. 15 features were identified as significant in the model of genes-only, 54 microbes in the model of microbes-only, and 28 genes and 18 microbes in the model with genes-and-microbes combined. PRAC1 expression was the most important feature for differentiating RCC and LCC in the genes-only model, with HOXB13, SPAG16, HOXC4, and RNLS also playing a role. Ruminococcus gnavus and Clostridium acetireducens were the most important in the microbial-only model. MYOM3, HOXC4, Coprococcus eutactus, PRAC1, lncRNA AC012531.25, Ruminococcus gnavus, RNLS, HOXC6, SPAG16 and Fusobacterium nucleatum were most important in the combined model. CONCLUSIONS: Many of the identified genes and microbes among all models have previously established associations with CRC. However, the ability of RF models to account for inter-feature relationships within the underlying decision trees may yield a more sensitive and biologically interconnected set of genomic and microbial biomarkers.Item The future of zoonotic risk prediction(The Royal Society, 2021-11-08) Carlson CJ; Farrell MJ; Grange Z; Han BA; Mollentze N; Phelan AL; Rasmussen AL; Albery GF; Bett B; Brett-Major DM; Cohen LE; Dallas T; Eskew EA; Fagre AC; Forbes KM; Gibb R; Halabi S; Hammer CC; Katz R; Kindrachuk J; Muylaert RL; Nutter FB; Ogola J; Olival KJ; Rourke M; Ryan SJ; Ross N; Seifert SN; Sironen T; Standley CJ; Taylor K; Venter M; Webala PWIn the light of the urgency raised by the COVID-19 pandemic, global investment in wildlife virology is likely to increase, and new surveillance programmes will identify hundreds of novel viruses that might someday pose a threat to humans. To support the extensive task of laboratory characterization, scientists may increasingly rely on data-driven rubrics or machine learning models that learn from known zoonoses to identify which animal pathogens could someday pose a threat to global health. We synthesize the findings of an interdisciplinary workshop on zoonotic risk technologies to answer the following questions. What are the prerequisites, in terms of open data, equity and interdisciplinary collaboration, to the development and application of those tools? What effect could the technology have on global health? Who would control that technology, who would have access to it and who would benefit from it? Would it improve pandemic prevention? Could it create new challenges?Item Learning emergent partial differential equations in a learned emergent space(Springer Nature Limited, 2022-06-09) Kemeth FP; Bertalan T; Thiem T; Dietrich F; Moon SJ; Laing CR; Kevrekidis IGWe propose an approach to learn effective evolution equations for large systems of interacting agents. This is demonstrated on two examples, a well-studied system of coupled normal form oscillators and a biologically motivated example of coupled Hodgkin-Huxley-like neurons. For such types of systems there is no obvious space coordinate in which to learn effective evolution laws in the form of partial differential equations. In our approach, we accomplish this by learning embedding coordinates from the time series data of the system using manifold learning as a first step. In these emergent coordinates, we then show how one can learn effective partial differential equations, using neural networks, that do not only reproduce the dynamics of the oscillator ensemble, but also capture the collective bifurcations when system parameters vary. The proposed approach thus integrates the automatic, data-driven extraction of emergent space coordinates parametrizing the agent dynamics, with machine-learning assisted identification of an emergent PDE description of the dynamics in this parametrization.Item Incremental Learning of Human Activities in Smart Homes(MDPI (Basel, Switzerland), 2022-11-03) Chua S-L; Foo LK; Guesgen HW; Marsland S; Mobilio M; Micucci DSensor-based human activity recognition has been extensively studied. Systems learn from a set of training samples to classify actions into a pre-defined set of ground truth activities. However, human behaviours vary over time, and so a recognition system should ideally be able to continuously learn and adapt, while retaining the knowledge of previously learned activities, and without failing to highlight novel, and therefore potentially risky, behaviours. In this paper, we propose a method based on compression that can incrementally learn new behaviours, while retaining prior knowledge. Evaluation was conducted on three publicly available smart home datasets.Item Identity and Gender Recognition Using a Capacitive Sensing Floor and Neural Networks(MDPI AG, 23/09/2022) Konings D; Alam F; Faulkner N; de Jong CIn recent publications, capacitive sensing floors have been shown to be able to localize individuals in an unobtrusive manner. This paper demonstrates that it might be possible to utilize the walking characteristics extracted from a capacitive floor to recognize subject and gender. Several neural network-based machine learning techniques are developed for recognizing the gender and identity of a target. These algorithms were trained and validated using a dataset constructed from the information captured from 23 subjects while walking, alone, on the sensing floor. A deep neural network comprising a Bi-directional Long Short-Term Memory (BLSTM) provided the most accurate identity performance, classifying individuals with an accuracy of 98.12% on the test data. On the other hand, a Convolutional Neural Network (CNN) was the most accurate for gender recognition, attaining an accuracy of 93.3%. The neural network-based algorithms are benchmarked against Support Vector Machine (SVM), which is a classifier used in many reported works for floor-based recognition tasks. The majority of the neural networks outperform SVM across all accuracy metrics.

