Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 10 of 21
  • Item
    Comparing the Effects of Collagen Hydrolysate and Dairy Protein on Recovery from Eccentric Exercise: A Double Blind, Placebo-Controlled Study.
    (MDPI (Basel, Switzerland), 2024-12-20) Barclay R; Coad J; Schraders K; Barnes MJ; Driss T
    Background: Consuming collagen hydrolysate (CH) may improve symptoms of exercise-induced muscle damage (EIMD); however, its acute effects have not been compared to dairy protein (DP), the most commonly consumed form of protein supplement. Therefore, this study compared the effects of CH and DP on recovery from EIMD. Methods: Thirty-three males consumed either CH (n = 11) or DP (n = 11), containing 25 g of protein, or an isoenergetic placebo (n = 11) immediately post-exercise and once daily for three days. Indices of EIMD were measured before and 30 min and 24, 48, and 72 h after 30 min of downhill running on a −15% slope at 80% of VO2max speed. Results: Downhill running induced significant EIMD, with time effects (all p < 0.001) for the delayed onset of muscle soreness (visual analogue scale), countermovement jump height, isometric midthigh pull force, maximal voluntary isometric contraction force, running economy, and biomarkers of muscle damage (creatine kinase) and inflammation (interleukin-6, high-sensitivity C-reactive protein). However, no group or interaction effects (all p > 0.05) were observed for any of the outcome measures. Conclusions: These findings suggest that the post-exercise consumption of CH or DP does not improve indices of EIMD during the acute recovery period in recreationally active males.
  • Item
    Skeletal muscle mass, strength, and physical performance gains are similar between healthy postmenopausal women and postmenopausal breast cancer survivors after 12 weeks of resistance exercise training.
    (Springer Nature, 2024-11-23) Artigas-Arias M; Alegría-Molina A; Vidal-Seguel N; Muñoz-Cofre R; Carranza-Leiva J; Sepúlveda-Lara A; Vitzel KF; Huard N; Sapunar J; Salazar LA; Curi R; Marzuca-Nassr GN
    Purpose Resistance exercise training (RET) effectively increases skeletal muscle mass and strength in healthy postmenopausal women. However, its effects on these parameters in postmenopausal breast cancer survivors are controversial or limited. Therefore, the aim of this study was to compare the effects of a 12-week progressive whole-body RET program on skeletal muscle mass, strength, and physical performance in healthy postmenopausal women versus postmenopausal women who survived breast cancer. Methods Thirteen healthy postmenopausal women (HEA, 54 ± 3 years, BMI 26.6 ± 2.7 kg·m2, n = 13) and eleven postmenopausal breast cancer survivors (BCS, 52 ± 5 years, BMI 26.8 ± 2.1 kg·m2, n = 11) participated in the study. Before and after the RET program, evaluations were performed on quadriceps muscle thickness, one-repetition maximum strength (1RM) for various exercises, grip strength, and physical performance. Results Both groups showed significant improvements in quadriceps muscle thickness (time effect, P < 0.001); 1RM strength for leg extension, leg press, chest press, horizontal row, and elbow extension (time effect, all P < 0.001); as well as handgrip strength (time effect, P = 0.035) and physical performance (time effect, all P < 0.001) after the 12-week RET program. There were no significant differences between the groups in response to RET for any of the outcomes measured. Conclusion Twelve weeks of RET significantly increases skeletal muscle mass, strength, and physical performance in postmenopausal women. No differences were observed between healthy postmenopausal women and postmenopausal breast cancer survivors. These findings point out that this study’s RET promotes skeletal muscle mass, strength, and performance gains regardless of breast cancer. Pre-Print Platform Research Square: https://doi.org/10.21203/rs.3.rs-4145715/v1; https://www.researchsquare.com/article/rs-4145715/v1 Clinical trial registration: NCT05690295.
  • Item
    Mitochondrial oxidative capacity and NAD+ biosynthesis are reduced in human sarcopenia across ethnicities
    (Springer Nature Limited, 2019-12-20) Migliavacca E; Tay SKH; Patel HP; Sonntag T; Civiletto G; McFarlane C; Forrester T; Barton SJ; Leow MK; Antoun E; Charpagne A; Seng Chong Y; Descombes P; Feng L; Francis-Emmanuel P; Garratt ES; Giner MP; Green CO; Karaz S; Kothandaraman N; Marquis J; Metairon S; Moco S; Nelson G; Ngo S; Pleasants T; Raymond F; Sayer AA; Ming Sim C; Slater-Jefferies J; Syddall HE; Fang Tan P; Titcombe P; Vaz C; Westbury LD; Wong G; Yonghui W; Cooper C; Sheppard A; Godfrey KM; Lillycrop KA; Karnani N; Feige JN
    The causes of impaired skeletal muscle mass and strength during aging are well-studied in healthy populations. Less is known on pathological age-related muscle wasting and weakness termed sarcopenia, which directly impacts physical autonomy and survival. Here, we compare genome-wide transcriptional changes of sarcopenia versus age-matched controls in muscle biopsies from 119 older men from Singapore, Hertfordshire UK and Jamaica. Individuals with sarcopenia reproducibly demonstrate a prominent transcriptional signature of mitochondrial bioenergetic dysfunction in skeletal muscle, with low PGC-1α/ERRα signalling, and downregulation of oxidative phosphorylation and mitochondrial proteostasis genes. These changes translate functionally into fewer mitochondria, reduced mitochondrial respiratory complex expression and activity, and low NAD+ levels through perturbed NAD+ biosynthesis and salvage in sarcopenic muscle. We provide an integrated molecular profile of human sarcopenia across ethnicities, demonstrating a fundamental role of altered mitochondrial metabolism in the pathological loss of skeletal muscle mass and function in older people.
  • Item
    Changes to insulin sensitivity in glucose clearance systems and redox following dietary supplementation with a novel cysteine-rich protein: A pilot randomized controlled trial in humans with type-2 diabetes.
    (Elsevier B.V, 2023-10-07) Peeters WM; Gram M; Dias GJ; Vissers MCM; Hampton MB; Dickerhof N; Bekhit AE; Black MJ; Oxbøll J; Bayer S; Dickens M; Vitzel K; Sheard PW; Danielson KM; Hodges LD; Brønd JC; Bond J; Perry BG; Stoner L; Cornwall J; Rowlands DS
    We recently developed a novel keratin-derived protein (KDP) rich in cysteine, glycine, and arginine, with the potential to alter tissue redox status and insulin sensitivity. The KDP was tested in 35 human adults with type-2 diabetes mellitus (T2DM) in a 14-wk randomised controlled pilot trial comprising three 2×20 g supplemental protein/day arms: KDP-whey (KDPWHE), whey (WHEY), non-protein isocaloric control (CON), with standardised exercise. Outcomes were measured morning fasted and following insulin-stimulation (80 mU/m2/min hyperinsulinaemic-isoglycaemic clamp). With KDPWHE supplementation there was good and very-good evidence for moderate-sized increases in insulin-stimulated glucose clearance rate (GCR; 26%; 90% confidence limits, CL 2%, 49%) and skeletal-muscle microvascular blood flow (46%; 16%, 83%), respectively, and good evidence for increased insulin-stimulated sarcoplasmic GLUT4 translocation (18%; 0%, 39%) vs CON. In contrast, WHEY did not effect GCR (-2%; -25%, 21%) and attenuated HbA1c lowering (14%; 5%, 24%) vs CON. KDPWHE effects on basal glutathione in erythrocytes and skeletal muscle were unclear, but in muscle there was very-good evidence for large increases in oxidised peroxiredoxin isoform 2 (oxiPRX2) (19%; 2.2%, 35%) and good evidence for lower GPx1 concentrations (-40%; -4.3%, -63%) vs CON; insulin stimulation, however, attenuated the basal oxiPRX2 response (4%; -16%, 24%), and increased GPx1 (39%; -5%, 101%) and SOD1 (26%; -3%, 60%) protein expression. Effects of KDPWHE on oxiPRX3 and NRF2 content, phosphorylation of capillary eNOS and insulin-signalling proteins upstream of GLUT4 translocation AktSer437 and AS160Thr642 were inconclusive, but there was good evidence for increased IRSSer312 (41%; 3%, 95%), insulin-stimulated NFκB-DNA binding (46%; 3.4%, 105%), and basal PAK-1Thr423/2Thr402 phosphorylation (143%; 66%, 257%) vs WHEY. Our findings provide good evidence to suggest that dietary supplementation with a novel edible keratin protein in humans with T2DM may increase glucose clearance and modify skeletal-muscle tissue redox and insulin sensitivity within systems involving peroxiredoxins, antioxidant expression, and glucose uptake.
  • Item
    Autophagy signaling in hypertrophied muscles of diabetic and control rats.
    (John Wiley and Sons Ltd on behalf of Federation of European Biochemical Societies., 2023-07-20) Scervino MVM; Fortes MAS; Vitzel KF; de Souza DR; Murata GM; Santana GO; da Silva EB; Levada-Pires AC; Kuwabara WMT; Loureiro TCA; Curi R; Krützfeldt J
    Autophagy plays a vital role in cell homeostasis by eliminating nonfunctional components and promoting cell survival. Here, we examined the levels of autophagy signaling proteins after 7 days of overload hypertrophy in the extensor digitorum longus (EDL) and soleus muscles of control and diabetic rats. We compared control and 3-day streptozotocin-induced diabetic rats, an experimental model for type 1 diabetes mellitus (T1DM). EDL muscles showed increased levels of basal autophagy signaling proteins. The diabetic state did not affect the extent of overload-induced hypertrophy or the levels of autophagy signaling proteins (p-ULK1, Beclin-1, Atg5, Atg12-5, Atg7, Atg3, LC3-I and II, and p62) in either muscle. The p-ULK-1, Beclin-1, and p62 protein expression levels were higher in the EDL muscle than in the soleus before the hypertrophic stimulus. On the contrary, the soleus muscle exhibited increased autophagic signaling after overload-induced hypertrophy, with increases in Beclin-1, Atg5, Atg12-5, Atg7, Atg3, and LC3-I expression in the control and diabetic groups, in addition to p-ULK-1 in the control groups. After hypertrophy, Beclin-1 and Atg5 levels increased in the EDL muscle of both groups, while p-ULK1 and LC3-I increased in the control group. In conclusion, the baseline EDL muscle exhibited higher autophagy than the soleus muscle. Although TDM1 promotes skeletal muscle mass loss and strength reduction, it did not significantly alter the extent of overload-induced hypertrophy and autophagy signaling proteins in EDL and soleus muscles, with the two groups exhibiting different patterns of autophagy activation.
  • Item
    Effect of Resonant Frequency Vibration on Delayed Onset Muscle Soreness and Resulting Stiffness as Measured by Shear-Wave Elastography.
    (MDPI (Basel, Switzerland), 2021-07-24) Jones GC; Blotter JD; Smallwood CD; Eggett DL; Cochrane DJ; Feland JB; Marino J; Scudiero O
    This study utilized resonant frequency vibration to the upper body to determine changes in pain, stiffness and isometric strength of the biceps brachii after eccentric damage. Thirty-one participants without recent resistance training were randomized into three groups: a Control (C) group and two eccentric exercise groups (No vibration (NV) and Vibration (V)). After muscle damage, participants in the V group received upper body vibration (UBV) therapy for 5 min on days 1-4. All participants completed a visual analog scale (VAS), maximum voluntary isometric contraction (MVIC), and shear wave elastography (SWE) of the bicep at baseline (pre-exercise), 24 h, 48 h, and 1-week post exercise. There was a significant difference between V and NV at 24 h for VAS (p = 0.0051), at 24 h and 1-week for MVIC (p = 0.0017 and p = 0.0016, respectively). There was a significant decrease in SWE for the V group from 24-48 h (p = 0.0003), while there was no significant change in the NV group (p = 0.9341). The use of UBV resonant vibration decreased MVIC decrement and reduced VAS pain ratings at 24 h post eccentric damage. SWE was strongly negatively correlated with MVIC and may function as a predictor of intrinsic muscle state in the time course of recovery of the biceps brachii.
  • Item
    A role for β-catenin in diet-induced skeletal muscle insulin resistance.
    (Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society, 2023-02-17) Masson SWC; Dissanayake WC; Broome SC; Hedges CP; Peeters WM; Gram M; Rowlands DS; Shepherd PR; Merry TL
    A central characteristic of insulin resistance is the impaired ability for insulin to stimulate glucose uptake into skeletal muscle. While insulin resistance can occur distal to the canonical insulin receptor-PI3k-Akt signaling pathway, the signaling intermediates involved in the dysfunction are yet to be fully elucidated. β-catenin is an emerging distal regulator of skeletal muscle and adipocyte insulin-stimulated GLUT4 trafficking. Here, we investigate its role in skeletal muscle insulin resistance. Short-term (5-week) high-fat diet (HFD) decreased skeletal muscle β-catenin protein expression 27% (p = 0.03), and perturbed insulin-stimulated β-cateninS552 phosphorylation 21% (p = 0.009) without affecting insulin-stimulated Akt phosphorylation relative to chow-fed controls. Under chow conditions, mice with muscle-specific β-catenin deletion had impaired insulin responsiveness, whereas under HFD, both mice exhibited similar levels of insulin resistance (interaction effect of genotype × diet p < 0.05). Treatment of L6-GLUT4-myc myocytes with palmitate lower β-catenin protein expression by 75% (p = 0.02), and attenuated insulin-stimulated β-catenin phosphorylationS552 and actin remodeling (interaction effect of insulin × palmitate p < 0.05). Finally, β-cateninS552 phosphorylation was 45% lower in muscle biopsies from men with type 2 diabetes while total β-catenin expression was unchanged. These findings suggest that β-catenin dysfunction is associated with the development of insulin resistance.
  • Item
    Postexercise muscle glycogen synthesis with glucose, galactose, and combined galactose-glucose ingestion.
    (American Physiological Society, 2023-12-01) Podlogar T; Shad BJ; Seabright AP; Odell OJ; Lord SO; Civil R; Salgueiro RB; Shepherd EL; Lalor PF; Elhassan YS; Lai Y-C; Rowlands DS; Wallis GA
    Ingested galactose can enhance postexercise liver glycogen repletion when combined with glucose but effects on muscle glycogen synthesis are unknown. In this double-blind randomized study participants [7 men and 2 women; V̇o2max: 51.1 (8.7) mL·kg-1·min-1] completed three trials of exhaustive cycling exercise followed by a 4-h recovery period, during which carbohydrates were ingested at the rate of 1.2 g·kg-1·h-1 comprising glucose (GLU), galactose (GAL) or galactose + glucose (GAL + GLU; 1:2 ratio). The increase in vastus lateralis skeletal-muscle glycogen concentration during recovery was higher with GLU relative to GAL + GLU [contrast: +50 mmol·(kg DM)-1; 95%CL 10, 89; P = 0.021] and GAL [+46 mmol·(kg DM)-1; 95%CL 8, 84; P = 0.024] with no difference between GAL + GLU and GAL [-3 mmol·(kg DM)-1; 95%CL -44, 37; P = 0.843]. Plasma glucose concentration in GLU was not significantly different vs. GAL + GLU (+ 0.41 mmol·L-1; 95%CL 0.13, 0.94) but was significantly lower than GAL (-0.75 mmol·L-1; 95%CL -1.34, -0.17) and also lower in GAL vs. GAL + GLU (-1.16 mmol·-1; 95%CL -1.80, -0.53). Plasma insulin was higher in GLU + GAL and GLU compared with GAL but not different between GLU + GAL and GLU. Plasma galactose concentration was higher in GAL compared with GLU (3.35 mmol·L-1; 95%CL 3.07, 3.63) and GAL + GLU (3.22 mmol·L-1; 95%CL 3.54, 2.90) with no difference between GLU + GAL (0.13 mmol·L-1; 95%CL -0.11, 0.37) and GLU. Compared with galactose or a galactose + glucose blend, glucose feeding was more effective in postexercise muscle glycogen synthesis. Comparable muscle glycogen synthesis was observed with galactose-glucose coingestion and exclusive galactose-only ingestion. NEW & NOTEWORTHY Postexercise galactose-glucose coingestion or exclusive galactose-only ingestion resulted in a lower rate of skeletal-muscle glycogen replenishment compared with exclusive glucose-only ingestion. Comparable muscle glycogen synthesis was observed with galactose-glucose coingestion and exclusive galactose-only ingestion.
  • Item
    The Efficacy of New Zealand Greenshell™ Mussel Powder Supplementation in Supporting Muscle Recovery Following Eccentric Exercise-Induced Muscle Damage in Healthy, Untrained Adult Males
    (MDPI (Basel, Switzerland), 2023-05-15) Lomiwes D; Barnes M; Shaw O; Ngametua N; Sawyer G; Burr N; Hedderley D; Kanon A; Bear T; Carroll A; Bentley_Hewitt K; Tian HS; Miller MR; Nieman DC
    Unaccustomed eccentric exercise results in muscle damage limiting physical performance for several days. This study investigated if Greenshell™ mussel (GSM) powder consumption expedited muscle recovery from eccentric exercise-induced muscle damage (EIMD). Methods: Twenty untrained adult men were recruited into a double-blind, placebo-controlled, cross-over study and were randomly assigned to receive the GSM powder or placebo treatment first. Participants consumed their allocated intervention for four weeks then completed a bench-stepping exercise that induced muscle damage to the eccentrically exercised leg. Muscle function, soreness and biomarkers of muscle damage, oxidative stress and inflammation were measured before exercise, immediately after exercise and 24, 48 and 72 h post exercise. GSM powder promoted muscle function recovery, significantly improving (p < 0.05) isometric and concentric peak torque at 48 h and 72 h post exercise, respectively. Participants on the GSM treatment had faster dissipation of soreness, with significant treatment × time interactions for affective (p = 0.007) and Visual Analogue Scale-assessed pain (p = 0.018). At 72 h, plasma creatine kinase concentrations in the GSM group were lower (p < 0.05) compared with the placebo group. This study provides evidence for GSM powder being effective in supporting muscle recovery from EIMD.
  • Item
    Changes in Skeletal Muscle Protein Metabolism Signaling Induced by Glutamine Supplementation and Exercise.
    (MDPI (Basel, Switzerland), 2023-11-07) Rodrigues Junior CF; Murata GM; Gerlinger-Romero F; Nachbar RT; Marzuca-Nassr GN; Gorjão R; Vitzel KF; Hirabara SM; Pithon-Curi TC; Curi R; Lemon PWR
    AIM: To evaluate the effects of resistance exercise training (RET) and/or glutamine supplementation (GS) on signaling protein synthesis in adult rat skeletal muscles. METHODS: The following groups were studied: (1) control, no exercise (C); (2) exercise, hypertrophy resistance exercise training protocol (T); (3) no exercise, supplemented with glutamine (G); and (4) exercise and supplemented with glutamine (GT). The rats performed hypertrophic training, climbing a vertical ladder with a height of 1.1 m at an 80° incline relative to the horizontal with extra weights tied to their tails. The RET was performed three days a week for five weeks. Each training session consisted of six ladder climbs. The extra weight load was progressively increased for each animal during each training session. The G groups received daily L-glutamine by gavage (one g per kilogram of body weight per day) for five weeks. The C group received the same volume of water during the same period. The rats were euthanized, and the extensor digitorum longus (EDL) muscles from both hind limbs were removed and immediately weighed. Glutamine and glutamate concentrations were measured, and histological, signaling protein contents, and mRNA expression analyses were performed. RESULTS: Supplementation with free L-glutamine increased the glutamine concentration in the EDL muscle in the C group. The glutamate concentration was augmented in the EDL muscles from T rats. The EDL muscle mass did not change, but a significant rise was reported in the cross-sectional area (CSA) of the fibers in the three experimental groups. The levels of the phosphorylated proteins (pAkt/Akt, pp70S6K/p70S6K, p4E-BP1/4E-BP1, and pS6/S6 ratios) were significantly increased in EDL muscles of G rats, and the activation of p4E-BP1 was present in T rats. The fiber CSAs of the EDL muscles in T, G, and GT rats were increased compared to the C group. These changes were accompanied by a reduction in the 26 proteasome activity of EDL muscles from T rats. CONCLUSION: Five weeks of GS and/or RET induced muscle hypertrophy, as indicated by the increased CSAs of the EDL muscle fibers. The increase in CSA was mediated via the upregulated phosphorylation of Akt, 4E-BP1, p70S6k, and S6 in G animals and 4E-BP1 in T animals. In the EDL muscles from T animals, a decrease in proteasome activity, favoring a further increase in the CSA of the muscle fibers, was reported.