Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 9 of 9
  • Item
    Efficient Limb Range of Motion Analysis from a Monocular Camera for Edge Devices.
    (MDPI (Basel, Switzerland), 2025-01-22) Yan X; Zhang L; Liu B; Qu G; Amerini I; Russo P; Di Ciaccio F
    Traditional limb kinematic analysis relies on manual goniometer measurements. With computer vision advancements, integrating RGB cameras can minimize manual labor. Although deep learning-based cameras aim to offer the same ease as manual goniometers, previous approaches have prioritized accuracy over efficiency and cost on PC-based devices. Nevertheless, healthcare providers require a high-performance, low-cost, camera-based tool for assessing upper and lower limb range of motion (ROM). To address this, we propose a lightweight, fast, deep learning model to estimate a human pose and utilize predicted joints for limb ROM measurement. Furthermore, the proposed model is optimized for deployment on resource-constrained edge devices, balancing accuracy and the benefits of edge computing like cost-effectiveness and localized data processing. Our model uses a compact neural network architecture with 8-bit quantized parameters for enhanced memory efficiency and reduced latency. Evaluated on various upper and lower limb tasks, it runs 4.1 times faster and is 15.5 times smaller than a state-of-the-art model, achieving satisfactory ROM measurement accuracy and agreement with a goniometer. We also conduct an experiment on a Raspberry Pi, illustrating that the method can maintain accuracy while reducing equipment and energy costs. This result indicates the potential for deployment on other edge devices and provides the flexibility to adapt to various hardware environments, depending on diverse needs and resources.
  • Item
    Machine learning prediction of sleep stages in dairy cows from heart rate and muscle activity measures.
    (Springer Nature Limited, 2021-05-25) Hunter LB; Baten A; Haskell MJ; Langford FM; O'Connor C; Webster JR; Stafford K
    Sleep is important for cow health and shows promise as a tool for assessing welfare, but methods to accurately distinguish between important sleep stages are difficult and impractical to use with cattle in typical farm environments. The objective of this study was to determine if data from more easily applied non-invasive devices assessing neck muscle activity and heart rate (HR) alone could be used to differentiate between sleep stages. We developed, trained, and compared two machine learning models using neural networks and random forest algorithms to predict sleep stages from 15 variables (features) of the muscle activity and HR data collected from 12 cows in two environments. Using k-fold cross validation we compared the success of the models to the gold standard, Polysomnography (PSG). Overall, both models learned from the data and were able to accurately predict sleep stages from HR and muscle activity alone with classification accuracy in the range of similar human models. Further research is required to validate the models with a larger sample size, but the proposed methodology appears to give an accurate representation of sleep stages in cattle and could consequentially enable future sleep research into conditions affecting cow sleep and welfare.
  • Item
    DeepCAC: a deep learning approach on DNA transcription factors classification based on multi-head self-attention and concatenate convolutional neural network
    (BioMed Central Ltd, 2023-09-18) Zhang J; Liu B; Wu J; Wang Z; Li J
    Understanding gene expression processes necessitates the accurate classification and identification of transcription factors, which is supported by high-throughput sequencing technologies. However, these techniques suffer from inherent limitations such as time consumption and high costs. To address these challenges, the field of bioinformatics has increasingly turned to deep learning technologies for analyzing gene sequences. Nevertheless, the pursuit of improved experimental results has led to the inclusion of numerous complex analysis function modules, resulting in models with a growing number of parameters. To overcome these limitations, it is proposed a novel approach for analyzing DNA transcription factor sequences, which is named as DeepCAC. This method leverages deep convolutional neural networks with a multi-head self-attention mechanism. By employing convolutional neural networks, it can effectively capture local hidden features in the sequences. Simultaneously, the multi-head self-attention mechanism enhances the identification of hidden features with long-distant dependencies. This approach reduces the overall number of parameters in the model while harnessing the computational power of sequence data from multi-head self-attention. Through training with labeled data, experiments demonstrate that this approach significantly improves performance while requiring fewer parameters compared to existing methods. Additionally, the effectiveness of our approach  is validated in accurately predicting DNA transcription factor sequences.
  • Item
    Periodic solutions in next generation neural field models
    (Springer Nature, 2023-10) Laing CR; Omel'chenko O
    We consider a next generation neural field model which describes the dynamics of a network of theta neurons on a ring. For some parameters the network supports stable time-periodic solutions. Using the fact that the dynamics at each spatial location are described by a complex-valued Riccati equation we derive a self-consistency equation that such periodic solutions must satisfy. We determine the stability of these solutions, and present numerical results to illustrate the usefulness of this technique. The generality of this approach is demonstrated through its application to several other systems involving delays, two-population architecture and networks of Winfree oscillators
  • Item
    DL-PPI: a method on prediction of sequenced protein-protein interaction based on deep learning
    (BioMed Central Ltd, 2023-12) Wu J; Liu B; Zhang J; Wang Z; Li J
    PURPOSE: Sequenced Protein-Protein Interaction (PPI) prediction represents a pivotal area of study in biology, playing a crucial role in elucidating the mechanistic underpinnings of diseases and facilitating the design of novel therapeutic interventions. Conventional methods for extracting features through experimental processes have proven to be both costly and exceedingly complex. In light of these challenges, the scientific community has turned to computational approaches, particularly those grounded in deep learning methodologies. Despite the progress achieved by current deep learning technologies, their effectiveness diminishes when applied to larger, unfamiliar datasets. RESULTS: In this study, the paper introduces a novel deep learning framework, termed DL-PPI, for predicting PPIs based on sequence data. The proposed framework comprises two key components aimed at improving the accuracy of feature extraction from individual protein sequences and capturing relationships between proteins in unfamiliar datasets. 1. Protein Node Feature Extraction Module: To enhance the accuracy of feature extraction from individual protein sequences and facilitate the understanding of relationships between proteins in unknown datasets, the paper devised a novel protein node feature extraction module utilizing the Inception method. This module efficiently captures relevant patterns and representations within protein sequences, enabling more informative feature extraction. 2. Feature-Relational Reasoning Network (FRN): In the Global Feature Extraction module of our model, the paper developed a novel FRN that leveraged Graph Neural Networks to determine interactions between pairs of input proteins. The FRN effectively captures the underlying relational information between proteins, contributing to improved PPI predictions. DL-PPI framework demonstrates state-of-the-art performance in the realm of sequence-based PPI prediction.
  • Item
    Learning emergent partial differential equations in a learned emergent space
    (Springer Nature Limited, 2022-06-09) Kemeth FP; Bertalan T; Thiem T; Dietrich F; Moon SJ; Laing CR; Kevrekidis IG
    We propose an approach to learn effective evolution equations for large systems of interacting agents. This is demonstrated on two examples, a well-studied system of coupled normal form oscillators and a biologically motivated example of coupled Hodgkin-Huxley-like neurons. For such types of systems there is no obvious space coordinate in which to learn effective evolution laws in the form of partial differential equations. In our approach, we accomplish this by learning embedding coordinates from the time series data of the system using manifold learning as a first step. In these emergent coordinates, we then show how one can learn effective partial differential equations, using neural networks, that do not only reproduce the dynamics of the oscillator ensemble, but also capture the collective bifurcations when system parameters vary. The proposed approach thus integrates the automatic, data-driven extraction of emergent space coordinates parametrizing the agent dynamics, with machine-learning assisted identification of an emergent PDE description of the dynamics in this parametrization.
  • Item
    Stromal composition predicts recurrence of early rectal cancer after local excision
    (John Wiley and Sons, Ltd, 2021-12) Jones HJS; Cunningham C; Askautrud HA; Danielsen HE; Kerr DJ; Domingo E; Maughan T; Leedham SJ; Koelzer VH
    AIMS: After local excision of early rectal cancer, definitive lymph node status is not available. An alternative means for accurate assessment of recurrence risk is required to determine the most appropriate subsequent management. Currently used measures are suboptimal. We assess three measures of tumour stromal content to determine their predictive value after local excision in a well-characterised cohort of rectal cancer patients without prior radiotherapy. METHODS AND RESULTS: A total of 143 patients were included. Haematoxylin and eosin (H&E) sections were scanned for (i) deep neural network (DNN, a machine-learning algorithm) tumour segmentation into compartments including desmoplastic stroma and inflamed stroma; and (ii) digital assessment of tumour stromal fraction (TSR) and optical DNA ploidy analysis. 3' mRNA sequencing was performed to obtain gene expression data from which stromal and immune scores were calculated using the ESTIMATE method. Full results were available for 139 samples and compared with disease-free survival. All three methods were prognostic. Most strongly predictive was a DNN-determined ratio of desmoplastic to inflamed stroma >5.41 (P < 0.0001). A ratio of ESTIMATE stromal to immune score <1.19 was also predictive of disease-free survival (P = 0.00051), as was stromal fraction >36.5% (P = 0.037). CONCLUSIONS: The DNN-determined ratio of desmoplastic to inflamed ratio is a novel and powerful predictor of disease recurrence in locally excised early rectal cancer. It can be assessed on a single H&E section, so could be applied in routine clinical practice to improve the prognostic information available to patients and clinicians to inform the decision concerning further management.
  • Item
    Identity and Gender Recognition Using a Capacitive Sensing Floor and Neural Networks
    (MDPI AG, 23/09/2022) Konings D; Alam F; Faulkner N; de Jong C
    In recent publications, capacitive sensing floors have been shown to be able to localize individuals in an unobtrusive manner. This paper demonstrates that it might be possible to utilize the walking characteristics extracted from a capacitive floor to recognize subject and gender. Several neural network-based machine learning techniques are developed for recognizing the gender and identity of a target. These algorithms were trained and validated using a dataset constructed from the information captured from 23 subjects while walking, alone, on the sensing floor. A deep neural network comprising a Bi-directional Long Short-Term Memory (BLSTM) provided the most accurate identity performance, classifying individuals with an accuracy of 98.12% on the test data. On the other hand, a Convolutional Neural Network (CNN) was the most accurate for gender recognition, attaining an accuracy of 93.3%. The neural network-based algorithms are benchmarked against Support Vector Machine (SVM), which is a classifier used in many reported works for floor-based recognition tasks. The majority of the neural networks outperform SVM across all accuracy metrics.
  • Item
    DeepPN: a deep parallel neural network based on convolutional neural network and graph convolutional network for predicting RNA-protein binding sites.
    (29/06/2022) Zhang J; Liu B; Wang Z; Lehnert K; Gahegan M
    BACKGROUND: Addressing the laborious nature of traditional biological experiments by using an efficient computational approach to analyze RNA-binding proteins (RBPs) binding sites has always been a challenging task. RBPs play a vital role in post-transcriptional control. Identification of RBPs binding sites is a key step for the anatomy of the essential mechanism of gene regulation by controlling splicing, stability, localization and translation. Traditional methods for detecting RBPs binding sites are time-consuming and computationally-intensive. Recently, the computational method has been incorporated in researches of RBPs. Nevertheless, lots of them not only rely on the sequence data of RNA but also need additional data, for example the secondary structural data of RNA, to improve the performance of prediction, which needs the pre-work to prepare the learnable representation of structural data. RESULTS: To reduce the dependency of those pre-work, in this paper, we introduce DeepPN, a deep parallel neural network that is constructed with a convolutional neural network (CNN) and graph convolutional network (GCN) for detecting RBPs binding sites. It includes a two-layer CNN and GCN in parallel to extract the hidden features, followed by a fully connected layer to make the prediction. DeepPN discriminates the RBP binding sites on learnable representation of RNA sequences, which only uses the sequence data without using other data, for example the secondary or tertiary structure data of RNA. DeepPN is evaluated on 24 datasets of RBPs binding sites with other state-of-the-art methods. The results show that the performance of DeepPN is comparable to the published methods. CONCLUSION: The experimental results show that DeepPN can effectively capture potential hidden features in RBPs and use these features for effective prediction of binding sites.