Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 8 of 8
  • Item
    Prevalence of Antimicrobial Resistance in Escherichia coli and Salmonella Species Isolates from Chickens in Live Bird Markets and Boot Swabs from Layer Farms in Timor-Leste.
    (MDPI (Basel, Switzerland), 2024-01-25) Pereira A; Sidjabat HE; Davis S; Vong da Silva PG; Alves A; Dos Santos C; Jong JBDC; da Conceição F; Felipe NDJ; Ximenes A; Nunes J; Fária IDR; Lopes I; Barnes TS; McKenzie J; Oakley T; Francis JR; Yan J; Ting S; Ahn J
    The rapid emergence of antimicrobial resistance is a global concern, and high levels of resistance have been detected in chicken populations worldwide. The purpose of this study was to determine the prevalence of antimicrobial resistance in Escherichia coli and Salmonella spp. isolated from healthy chickens in Timor-Leste. Through a cross-sectional study, cloacal swabs and boot swabs were collected from 25 live bird markets and two layer farms respectively. E. coli and Salmonella spp. from these samples were tested for susceptibility to six antimicrobials using a disk diffusion test, and a subset was tested for susceptibility to 27 antimicrobials using broth-based microdilution. E. coli and Salmonella spp. isolates showed the highest resistance towards either tetracycline or ampicillin on the disk diffusion test. E. coli from layer farms (odds ratio:5.2; 95%CI 2.0-13.1) and broilers (odds ratio:18.1; 95%CI 5.3-61.2) were more likely to be multi-drug resistant than those from local chickens. Based on the broth-based microdilution test, resistance to antimicrobials in the Timor-Leste Antimicrobial Guidelines for humans were low, except for resistance to ciprofloxacin in Salmonella spp. (47.1%). Colistin resistance in E. coli was 6.6%. Although this study shows that antimicrobial resistance in chickens was generally low in Timor-Leste, there should be ongoing monitoring in commercial chickens as industry growth might be accompanied with increased antimicrobial use.
  • Item
    High steam-conditioning temperature during the pelleting process impairs growth performance and nutrient utilization in broiler starters fed barley-based diets, regardless of carbohydrase supplementation
    (Elsevier Inc. on behalf of Poultry Science Association Inc., 2021-08) Perera WNU; Abdollahi MR; Zaefarian F; Wester TJ; Ravindran V
    The influence of supplemental carbohydrase (Carb) and conditioning temperature (CT) on growth performance, nutrient utilization and intestinal morphometry of broilers (d 1–21) fed barley-based diets was examined in a 2 × 3 factorial arrangement, evaluating 2 levels of Carb (0 and 150 g/tonne of feed) and three CT (60, 74, and 88°C). A total of 288, 1-day-old male broilers (8 birds/cage; 6 cages/treatment) were used. The activities of endo-1,4-β- glucanase, endo-1,3 (4)-β-glucanase and endo-1,4-β-xylanase in the Carb were 800 BGU/g, 700 BGU/g and 2,700 XU/g, respectively. On d 21, ileal digesta was collected for the determination of nutrient digestibility. There was no significant interaction between Carb and CT for any tested parameter. Supplemental Carb, regardless of CT, increased weight gain (WG; P < 0.05) and reduced feed per gain (F/G; P < 0.001) by 30 g/bird and 6.5 points, respectively. Increasing CT to 88°C reduced (P < 0.05) WG, but increased (P < 0.05) F/G compared to the diets conditioned at 60° and 74°C. Regardless of CT, Carb enhanced (P < 0.05) the digestibility of starch and AMEn by 1.15% and 32 kcal/kg, respectively. Compared to the diets conditioned at 60° and 74°C, CT at 88°C reduced (P < 0.05) digestibility of dry matter, nitrogen, phosphorus, gross energy, and AMEn. Birds fed diets conditioned at 88°C showed lower (P < 0.05) starch digestibility compared to those fed diets conditioned at 60°C. Conditioning at 88°C increased (P < 0.05) jejunal digesta viscosity by 10.2% compared to diets conditioned at 60° and 74°C. Overall, Carb supplementation improved WG, F/G, starch digestibility and AMEn in broilers fed barley-based diets, irrespective of CT applied. Conditioning barley-based diets at 88°C impaired the ability of birds to utilize nitrogen, starch, phosphorus and energy, and consequently deteriorated WG and F/G. The lack of significant interactions between Carb and CT indicated that negative impacts caused by high CT on bird performance and nutrient utilization occurred regardless of Carb enzyme supplementation. Supplemental Carb per se could not remedy the adverse effects of high CT.
  • Item
    Influence of age and dietary cellulose levels on ileal endogenous energy losses in broiler chickens
    (Elsevier Inc. on behalf of Poultry Science Association Inc., 2022-07) Khalil MM; Abdollahi MR; Zaefarian F; Chrystal PV; Ravindran V
    Two experiments were conducted to investigate the influence of age and dietary cellulose levels on the ileal endogenous energy losses (IEEL) in broiler chickens. In experiment 1, a glucose-based purified diet was used to determine the IEEL. Titanium dioxide (5.0 g/kg) was added to the diet as an indigestible marker. Six groups of broiler chickens aged 1 to 7, 8 to 14, 15 to 21, 22 to 28, 29 to 35 or 36 to 42 d posthatch, were utilized. With the exception of 1-7 d, the birds were fed a starter (d 1–21) and/or a finisher (d 22–35) diet before the experimental diet was introduced. The diet was randomly allocated to 6 replicate cages, and the number of birds per cage was 12 (d 1–7), 10 (d 8–14), and 8 (d 15–42). The ileal digesta were collected at the last day of each week (d 7, 14, 21, 28, 35, and 42). Bird age had no effect (P > 0.05) on the IEEL estimates. The IEEL estimates ranged from 263 to 316 kcal/kg dry matter intake (DMI) during weeks 1 to 6. In Experiment 2, 4 glucose-based purified diets were developed using 0, 25, 50 and 75 g/kg cellulose. Titanium dioxide (5.0 g/kg) was added to the diets as an indigestible marker. The diets were randomly allocated to 6 replicate cages (8 birds per cage) and fed from 18 to 21 d posthatch and, ileal digesta were collected on d 21. The IEEL estimates of broiler chickens at 21 d of age showed a quadratic response (P < 0.05) to increasing cellulose contents. The lowest IEEL (88 kcal/kg DMI) was recorded for the diet without cellulose and the highest IEEL (430 kcal/kg DMI) was observed for the diet with 75 g/kg cellulose. Overall, the present findings confirmed that the IEEL in broiler chickens can be quantified by feeding a glucose-based purified diet. Broiler age had no influence on the IEEL estimates. The IEEL increased with increasing dietary cellulose contents and the IEEL determined using a purified diet without cellulose represents a better estimate of IEEL.
  • Item
    Nutrition and Digestive Physiology of the Broiler Chick: State of the Art and Outlook
    (MDPI (Basel, Switzerland), 2021-10) Ravindran V; Abdollahi MR; Arczewska-Włosek A; Świątkiewicz S
    Because the intestine is the primary nutrient supply organ, early development of digestive function in newly hatched chick will enable it to better utilize nutrients, grow efficiently, and achieve the genetic potential of contemporary broilers. Published data on the growth and digestive function of the gastrointestinal tract in neonatal poultry were reviewed. Several potential strategies to improve digestive tract growth and function in newly hatched chick are available and the options include breeder nutrition, in ovo feeding, early access to feed and water, special pre-starter diets, judicious use of feed additives, and early programming.
  • Item
    Modeling improvements in ileal digestible amino acids by a novel consensus bacterial 6-phytase variant in broilers
    (Elsevier, 2022-03) Dersjant-Li Y; Bello A; Stormink T; Abdollahi MR; Ravindran V; Babatunde OO; Adeola O; Toghyani M; Liu SY; Selle PH; Marchal L
    Data from 13 datasets from 4 trials on the effect of a novel consensus bacterial 6-phytase variant (PhyG) on the apparent ileal digestibility (AID) of amino acids (AA) in broilers were used to model AID AA responses. The datasets were obtained from 3 trial locations (New Zealand, Australia and United States) and collectively incorporated variations in diet composition (feedstuff composition, phytate-P (PP) level, limestone solubility), feed form (mash or pellet), bird genetics (strain), and age at sampling (11–35 d of age). In total, 384 observations were analyzed. First, the relationships between AID of AA (as coefficients) and increasing phytase dose level from 0 to 4,000 FTU/kg were evaluated across all datasets using exponential curve fitting. Second, the percentage unit change in AID of AA at each phytase dose level from baseline (basal diet [BD] without phytase) was calculated separately for each dataset and the data then modeled together using exponential curve fitting. The model-predicted mean coefficient of AID of total AA in basal diets was 0.76 (range 0.56 [Cys] to 0.83 [Glu]), which was increased by PhyG to 0.80 and 0.81 at 2,000 and 4,000 FTU/kg, respectively. Exponential increases in the percentage unit improvement in AID of 18 individual and of total AA with increasing phytase dose level were evident (P < 0.05). Improvements (vs. BD) at 2,000 FTU/kg and 4,000 FTU/kg, respectively, were greatest for Cys (+9.2 and +11.0% units), Met (after deduction of synthetic Met, +8.4 and +9.0% units), and Thr (after deduction of synthetic Thr, +6.2 and +7.3% units). The data demonstrated consistent improvements in the AID of AA by the phytase. The modeling results generated from data gathered from birds sampled at different ages and from different dietary settings with correction of synthetic AA for Lys, Met, Thr, and Trp, enabled a more accurate prediction of the digestible AA contribution from the diet by this novel phytase. This will allow diet-specific AA matrix recommendations to be made in commercial feed formulations.
  • Item
    Apparent metabolizable energy of cereal grains for broiler chickens is influenced by age
    (Elsevier Inc. on behalf of Poultry Science Association Inc., 2021-09) Khalil MM; Abdollahi MR; Zaefarian F; Chrystal PV; Ravindran V
    The current study was conducted to investigate the influence of broiler age on the AME and AMEn of 4 common cereal grains (wheat, sorghum, barley, and corn). Four experimental diets with the same inclusion (962 g/kg) of each grain were developed and fed to groups of broiler chickens aged 1 to 7, 8 to 14, 15 to 21, 22 to 28, 29 to 35, or 36 to 42 d post-hatch. Each diet, in pellet form, was randomly allocated to 6 replicate cages in each age group. Except for the 0 to 7 d age group, the birds were fed a starter (d 0–21) and/or a finisher (d 21–35) diet before the introduction of experimental diets. The number of birds per cage were 10 (d 1–7) and 8 (d 8–42). Excreta were collected over the last 4 d of each age period. The AME and AMEn of the grains were determined by the total excreta collection. Bird age influenced (P < 0.001) the AME and AMEn of all cereal grains. The AMEn of wheat declined quadratically (P < 0.01) with advancing age, from 3,461 kcal/kg in wk 1 to 3,219 kcal/kg in wk 2 and then plateaued. The AMEn of sorghum grain declined linearly (P < 0.001) with advancing age, from 3,762 kcal/kg in wk 1 to 3,614 kcal/kg in wk 2, plateaued to wk 5 and then declined to 3,556 kcal/kg in wk 6. A quadratic (P < 0.001) reduction in the AMEn of barley was observed as birds grew older, with the AMEn decreasing between wk 1 (3,286 kcal/kg) and wk 2 (2,988 kcal/kg), increasing in wk 3 (3,117 kcal/kg) and then plateauing. The AMEn of corn declined quadratically (P < 0.05) with advancing broiler age; the highest AMEn was observed in wk 1 and 5, the lowest AMEn in wk 2, with the other weeks being intermediate. In conclusion, the present results showed that broiler age has a substantial impact on the AME and AMEn of cereal grains and the effect varied depending on the cereal grain. These data suggest that age dependent AME and AMEn values may need to be considered when formulating broiler diets to improve the precision of feed formulation and production efficiency.
  • Item
    Metabolizable energy and standardized ileal amino acid digestibility of full-fat soybeans for broilers are influenced by wet-heating, expansion temperature, and autoclaving time
    (Elsevier Inc. on behalf of Poultry Science Association Inc, 2022-09) Abdollahi MR; Wiltafsky-Martin M; Zaefarian F; Ravindran V
    The influence of wet-heating (WH) and expansion temperature (ET), and autoclaving time (AT) on the nitrogen-corrected apparent metabolizable energy (AMEn) and standardized ileal digestibility (SID) of AA in full-fat soybeans (FFSB) for broilers was examined in 2 experiments. The AMEn and SID AA of FFSB were determined by the difference and direct methods, respectively. In Experiment 1, raw FFSB (K0) were either treated by WH at 80°C for 1 min and expanded at 115°C (K1-115) or 125°C (K1-125), WH at 100°C for 6 min and expanded at 115°C (K2-115) or 125°C (K2-125), or WH at 100°C for 16 min and expanded at 115°C (K3-115) or 125°C (K3-125). Wet-heating and ET significantly (P < 0.001) increased the AMEn in FFSB. Among heat-treated FFSB, K1-115 and K1-125 resulted in the lowest and highest AMEn values, respectively, with all samples wet-heated at 100°C being intermediate. The K3-125 had AMEn values similar (P > 0.05) to K1-125. Among heat-treated FFSB, the highest average SID AA was recorded for K3-125. In Experiment 2, K3-125 from experiment 1 was divided into 9 batches and autoclaved at 110°C for 15 (Z1), 30 (Z2), 45 (Z3), 60 (Z4), 120 (Z5), 180 (Z6), 240 (Z7), 300 (Z8), and 360 (Z9) min. A quadratic (P < 0.01) pattern was observed for the effects of AT on AMEn. The AMEn was unaffected until 300 min AT and then declined at 360 min. The AT quadratically (P < 0.001) affected the average SID AA where the SID increased from K3-125 to Z1, plateaued to Z5, and then declined to Z9. In conclusion, the results demonstrated that WH at 100°C for 16 min followed by expansion at 125°C as the most optimal wet-heating and expansion processing, associated with the highest SID AA. Autoclaving at 110°C for 30 min enhanced energy utilization and AA digestibility in FFSB, suggesting that further advantages may be achieved by short-time autoclaving of previously wet-heated and expanded FFSB samples.
  • Item
    Influence of Conditioning and Expansion Characteristics on the Apparent Metabolizable Energy and Standardized Ileal Amino Acid Digestibility of Full-Fat Soybeans for Broilers
    (MDPI (Basel, Switzerland), 2022-04) Abdollahi MR; Wiltafsky-Martin M; Zaefarian F; Ravindran V
    This study investigated the influence of short-term and long-term conditioning and expansion on the nitrogen-corrected apparent metabolizable energy (AMEn) and standardized ileal digestibility (SID) of amino acids (AA) in full-fat soybeans (FFSB) for broilers. A batch of raw soybeans was used to manufacture 10 FFSB products (T0 to T9) by applying various combinations of conditioning and expansion. The AMEn and SID AA of FFSB were determined by difference and direct methods, respectively. All heat treatments increased (p < 0.001) the AMEn compared to raw FFSB. The sample subjected to long-term conditioning at 100 °C for 6 min and expansion at 18 kWh/t (T5) supported 3.88 MJ/kg higher AMEn than the raw FFSB. Raw FFSB had the poorest (p < 0.05) AA digestibility. Among the heat-treated samples, the highest (p < 0.05) SID AA was recorded for T5. The results demonstrated that the long-term conditioning of FFSB at 100 °C for 6 min prior to expansion with 18 kWh/t specific energy input enhanced metabolizable energy and SID AA. Further increases in conditioning time from 6 to 9 min or expansion of specific energy input from 18 to 28 kWh/t did not yield additional benefits to energy utilization and AA digestibility of FFSB.