• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Genetic fuzzy logic approach to local ramp metering control using microscopic traffic simulation : a thesis presented in partial fulfillment of the requirements for the degree of Master of Engineering in Mechatronics at Massey University, Auckland, New Zealand

    Icon
    View/Open Full Text
    02_whole.pdf (18.92Mb)
    01_front.pdf (17.93Mb)
    Export to EndNote
    Abstract
    Ramp metering, one of the most effective solutions for improving motorway traffic flows, is playing increasingly important role in traffic management systems. Because of its capability to handle nonlinear and non-stationary problems, fuzzy logic based ramp metering algorithms have been always considered as an extremely suitable control measures to handle a complex nonlinear traffic system. This thesis proposes a genetic fuzzy approach to design a traffic-responsive ramp control algorithm for an isolated onramp. For a local ramp meter algorithm, the problem could be described as the inflow optimization of on-ramp, based on the evaluation of motorway traffic condition. If the inflow of on-ramp is considered as the decision variable, the ramp control problem could be treated as a nonlinear optimization problem of maximizing the evaluation function. The adaptive genetic fuzzy approach is actually a control approach to maximize the inflow of on-ramp under the restriction of evaluation function. In this thesis, a well-known fuzzy logic based ramp metering algorithms developed by Bogenberger is introduced and implemented with an on-ramp congestion model of Constellation Drive Interchange in a stochastic microscopic traffic simulator, Aimsun. To improve the performance of fuzzy control system, genetic algorithm is applied to tune the parameterized membership function of each fuzzy input to maintain the flow density of motorway blow the estimated congestion density. The performances of the genetic fuzzy logic control ramp metering are compared with FLC (fuzzy logic control) ramp metering by means of the percentage change of TTT (Total Travel Time) based on no control condition in Aimsun. The simulation results show the genetic fuzzy ramp metering has a more significant improvement on TTT and more strong stability to maintain system flow density than FLC ramp metering.
    Date
    2009
    Author
    Yu, Xue Feng
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/1146
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1