• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Functionalised polythiophenes : synthesis, characterisation and applications : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Chemistry at Massey University, Palmerston North, New Zealand

    Icon
    View/Open Full Text
    02_whole.pdf (9.957Mb)
    01_front.pdf (1.624Mb)
    Export to EndNote
    Abstract
    Conducting polymers display properties such as high conductivity, light weight and redox activity giving them great potential for use in many applications. Polythiophenes have proved to be particularly useful because they are readily functionalised and have good chemical stability. The purpose of this work was to investigate the effect of electron-withdrawing and electron-donating substituents on the synthesis and properties of polythiophenes. Initial work entailed the synthesis of a series of styryl-substituted terthiophenes. Polymerisation of these materials using both chemical and electrochemical methods was found to produce predominantly short chain oligomers (n < 4) and insoluble material that could not be further processed. An analogous series of styryl-substituted terthienylenevinylene materials were electrochemically oxidised for comparison to the terthiophene series. These materials were also found to produce predominantly dimer and short oligomers, but with the expected higher conjugation length than the corresponding terthiophene oligomers. To enhance polymerisation and increase the solubility of the resulting materials, the polymerisation of styryl-terthiophenes with alkyl and alkoxy functionalities was investigated. The properties of the resulting polymeric materials were determined using electrochemistry, mass spectrometry, spectroscopy and microscopy. The alkoxy substituted polymer was found to have a longer average polymer length than the corresponding alkyl derivative (~n = 11 compared to ~n = 6), but was less soluble (78% compared to 100%). It was found, however, that by increasing the alkoxy chain length from 6 carbons to 10 carbons, the solubility of the polymer could be increased to 97% without affecting the average polymer length. The alkoxy-substituted polymers were observed to be very stable in the oxidised, conducting state compared to the alkyl-substituted polymer, which appeared to be more stable in the neutral, non-conducting state. It was found that these soluble materials could be separated into fractions of different length polymers by using sequential soxhlet extractions in different solvents. Preliminary investigations were made into the suitability of these soluble oligomeric and polymeric materials for use in photovoltaic, actuator and organic battery applications and promising results were achieved for actuator and battery functions. In addition, the solubility of these materials allowed nano- and micro-structured fibre and fibril surfaces to be prepared for use in high surface area electrodes.
    Date
    2005
    Author
    Ballantyne, Amy Marisa
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/1561
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1