• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Advanced second order functional differential equations : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mathematics at Massey University

    Icon
    View/Open Full Text
    02_whole.pdf (4.164Mb)
    01_front.pdf (588.9Kb)
    Export to EndNote
    Abstract
    Hall and Wake [1989] showed that an advanced first order equation arising in a cell growth model has a Dirichlet series solution. If the effects of dispersion are included, the cell growth model leads to a second order equation. We show that this equation also has a Dirichlet series solution, which is unique and positive and that it has one maximum. We then investigate the general second order equation with constant coefficients, and show that these equations also have Dirichlet series solutions and that certain qualitative properties such as uniqueness and positivity are preserved for a range of coefficients. Although the solution to the equation arising in a cell growth model with dispersion is a probability density function of the cell size, y(0) ≠ 0. There are however parameter choices such that y(0) = 0 and this motivates our study of the eigenvalue problem. Our final chapter concerns general equations with variable coefficients. We can express a first order equation as a Fredholm integral equation of the second kind and the existence of a solution thus follows using results for Fredholm equations. In addition, we study some classes of second order equations, and show that certain equations have a series solution involving Bessel or Airy functions.
    Date
    1998
    Author
    Kim, Hee-Kyung
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/2393
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1