• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    On essential self-adjointness, confining potentials & the Lp-Hardy inequality : a thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics at Massey University, Albany, New Zealand

    Icon
    View/Open Full Text
    01_front.pdf (213.2Kb)
    02_whole.pdf (1.071Mb)
    Export to EndNote
    Abstract
    Let Ω be a domain in Rm with non-empty boundary and let H = -Δ + V be a Schrödinger operator defined on C[symbol](Ω) where V E L[symbol](Ω). We seek the minimal criteria on the potential V that ensures that H is essentially self-adjoint, i.e. that ensures the closed operator H is self-adjoint. Overcoming various technical problems, we extend the results of Nenciu & Nenciu in [1] to more general types of domain, specifically unbounded domains and domains whose boundaries are fractal. As a special case of an abstract condition we show that H is essentially self-adjoint provided that sufficiently close to the boundary [equation] where d(x) = dist(x;δΩ) and the right hand side of the above inequality contains a f nite number of logarithmic terms. The constant μ2(Ω ) appearing in (1) is the variational constant associated with the L2-Hardy inequality and is non-zero if and only if Ω admits the aforementioned inequality. Our results indicate that the existence of an L2-Hardy nequality, and the specific value of μ2(Ω), depend intimately on the (Hausdorff / Aikawa) dimension of the boundary. In certain cases where Ω is geometrically simple, this constant, as well as the constant `1' appearing in front of each logarithmic term, is shown to be optimal with regards to the essential self-adjointness of H.
    Date
    2014
    Author
    Ward, A. D.
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/5941
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1