Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
4 results
Search Results
Item The Efficacy of New Zealand Greenshell™ Mussel Powder Supplementation in Supporting Muscle Recovery Following Eccentric Exercise-Induced Muscle Damage in Healthy, Untrained Adult Males(MDPI (Basel, Switzerland), 2023-05-15) Lomiwes D; Barnes M; Shaw O; Ngametua N; Sawyer G; Burr N; Hedderley D; Kanon A; Bear T; Carroll A; Bentley_Hewitt K; Tian HS; Miller MR; Nieman DCUnaccustomed eccentric exercise results in muscle damage limiting physical performance for several days. This study investigated if Greenshell™ mussel (GSM) powder consumption expedited muscle recovery from eccentric exercise-induced muscle damage (EIMD). Methods: Twenty untrained adult men were recruited into a double-blind, placebo-controlled, cross-over study and were randomly assigned to receive the GSM powder or placebo treatment first. Participants consumed their allocated intervention for four weeks then completed a bench-stepping exercise that induced muscle damage to the eccentrically exercised leg. Muscle function, soreness and biomarkers of muscle damage, oxidative stress and inflammation were measured before exercise, immediately after exercise and 24, 48 and 72 h post exercise. GSM powder promoted muscle function recovery, significantly improving (p < 0.05) isometric and concentric peak torque at 48 h and 72 h post exercise, respectively. Participants on the GSM treatment had faster dissipation of soreness, with significant treatment × time interactions for affective (p = 0.007) and Visual Analogue Scale-assessed pain (p = 0.018). At 72 h, plasma creatine kinase concentrations in the GSM group were lower (p < 0.05) compared with the placebo group. This study provides evidence for GSM powder being effective in supporting muscle recovery from EIMD.Item Nutrition-Based Strategies to Reduce Exercise-Induced Muscle Damage and Soreness(MDPI (Basel, Switzerland), 2023-05-29) Barnes MExercise induced-muscle damage (EIMD) occurs after strenuous and/or novel exercise that involves repeated eccentric contractions [...].Item An experimental model of contusion injury in humans(Public Library of Science, 17/11/2022) Barnes M; Lomiwes D; Parry DAD; Stephen MIntroduction Contusion injuries are common in sport, but our knowledge of the responses to injury primarily come from animal studies and research using eccentric exercise. Therefore, the aim of this study was to develop a model of contusion injury in human participants and, additionally, investigate and compare physiological responses to four impact loads. Methods Thirty-two males were exposed to a single impact of either 4.2, 5.2, 6.2 or 7.2kg, dropped from 67 cm, on to the vastus lateralis of one leg. Maximum voluntary and electrically induced quadriceps force, and pressure pain threshold were measured, and blood sampling carried out, prior to and 30min, 24, 48 and 72h post-impact. Magnetic resonance imaging was carried out 24h post-impact to quantify oedema. Results Despite impact force with 7.2kg (1681.4 ± 235.6 N) not being different to 6.2kg (1690.7 ± 117.6 N), 7.2kg resulted in greater volume of oedema, voluntary force loss, pain and elevations in creatine kinase than the other loads. Although electrically induced force changed over time, post-hoc analysis failed to identify any changes. Interleukin-6 and prostaglandin-E2 did not change over time for any of the loads. Significant correlations were found between oedema volume, pressure pain threshold and maximum voluntary contraction force. Conclusions This is the first experimental study to investigate traumatic loading of skeletal muscle and the subsequent physiological responses associated with contusion injuries in humans. The absence of immediate elevations in creatine kinase and changes in electrically induced force suggest impact, with forces similar to those experienced in contact sport, does not cause significant, direct damage to skeletal muscle. However, the relationship between oedema volume, changes in pressure pain threshold and maximum voluntary contraction force suggests central inhibition plays a role in contusion-related muscle dysfunction.Item Nutritional Compounds to Improve Post-Exercise Recovery(MDPI (Basel, Switzerland), 2022-12) O'Connor E; Mundel T; Barnes MThe metabolic and mechanical stresses associated with muscle-fatiguing exercise result in perturbations to bodily tissues that lead to exercise-induced muscle damage (EIMD), a state of fatigue involving oxidative stress and inflammation that is accompanied by muscle weakness, pain and a reduced ability to perform subsequent training sessions or competitions. This review collates evidence from previous research on a wide range of nutritional compounds that have the potential to speed up post-exercise recovery. We show that of the numerous compounds investigated thus far, only two—tart cherry and omega-3 fatty acids—are supported by substantial research evidence. Further studies are required to clarify the potential effects of other compounds presented here, many of which have been used since ancient times to treat conditions associated with inflammation and disease.

